
ONLINE VISUALIZATION

OF SPATIAL DATA

A PROTOTYPE OF AN OPEN SOURCE INTERNET MAP

SERVER WITH BACKEND SPATIAL DATABASE

FOR THE SWISS NATIONAL PARK

Thomas Hächler

Diploma Thesis

Department of Geography

University of Zurich

2003

Advisor:

Dr. Britta Allgöwer

Faculty Member:

Prof. Dr. Robert Weibel

Acknowledgements I

ACKNOWLEDGMENTS

I would like to thank all persons who supported me during this thesis project,

especially:

• Dr. Britta Allgöwer, for making this project possible, for supervision

and revision of this thesis and for providing the data of the GIS

Swiss National Park.

• Prof. Dr. Robert Weibel, for supporting this thesis and for its final

revision.

• Dr. Martin Galanda and Dr. Alessandro Cecconi, for conceptual

contributions and literature hints.

• dipl. zool. Daniel Wirz, for most useful advice with installation issues,

helpful discussions about databases and system architecture, and

for the revision of the technical chapters of this thesis.

• PD Dr. Herbert Bitto, for interesting discussions about topology and

spatial databases, and for the revision of the respective chapter of

this thesis.

• The Open Source Community, for developing the software

components used in this project and for unselfishly sharing ideas

and advice.

My special thanks are dedicated to Yvonne Leuenberger, for supporting and

motivating me, and for her patience and love.

Finally, I am forever grateful to my family, especially my parents Margrit and

Roland Hächler, who made my education possible and who supported me during all

my life.

Table of Contents III

TABLE OF CONTENTS

PART I: INTRODUCTION AND APPROACH

1 INTRODUCTION... 1
1.1 MOTIVATION .. 1
1.2 THESIS ORGANIZATION.. 2

2 GIS, THE INTERNET AND WEBGIS.. 5
2.1 BRIEF HISTORICAL OVERVIEW ... 5
2.2 INTEROPERABILITY AND STANDARDS.. 7

2.2.1 WMS Implementation Specification.. 7
2.2.2 GML Implementation Specification.. 8
2.2.3 Simple Features Specification For SQL ... 8

2.3 APPROACHES IN WEB MAPPING... 9
2.5 CATEGORIZATIONS IN WEB MAPPING ... 10

2.5.1 Types of web mapping goals ... 10
2.5.2 Types of web mapping applications.. 12
2.5.3 Types of web maps... 15

2.6 DEFINITIONS / TERMS AND TECHNOLOGIES... 16
3 THESIS APPROACH .. 19

3.1 ANALYSIS OF DEFICIENCIES... 19
3.1.1 A new Cubic Model ... 19
3.1.2 Requirements for Web Maps... 20
3.1.3 Commercial Software vs. Open Systems... 21
3.1.4 Research Challenges... 22

3.2 CONCLUSIONS .. 23
3.3 RESEARCH OBJECTIVE ... 25

PART II: WEBGIS ARCHITECTURE

4 CLIENT-SIDE TECHNOLOGY AND GIS FUNCTIONALITY .. 27
4.1 CLIENT-SIDE GIS OPERATIONS ... 27

4.1.1 HTML .. 27
4.1.2 JavaScript .. 28
4.1.3 Plug-Ins ... 28
4.1.4 Java Applets... 29
4.1.5 SVG.. 29

4.2 CLIENT-SIDE CONTEXT PRESERVATION .. 29
4.2.1 HTML Forms / HTTP-Request and -Response... 30
4.2.2 Cookies .. 30

5 SERVER-SIDE TECHNOLOGY AND GIS FUNCTIONALITY ... 31
5.1 SERVER-SIDE GIS OPERATIONS... 32

5.1.1 Common Gateway Interface ... 32
5.1.2 Server Plug-Ins.. 32
5.1.3 Other Possibilities ... 33

5.2 SERVER-SIDE CONTEXT PRESERVATION ... 33
5.3 LOAD BALANCING ... 34
5.4 DATA STORAGE.. 34

IV Table of Contents

6 EXTENDED RELATIONAL DATABASE MANAGEMENT SYSTEMS 39
6.1 FROM RDBMS TO EXTENDED RDBMS.. 39

6.1.1 Requirements of Extended RDBMS .. 40
6.2 TOPOLOGY, REPRESENTATION AND LOGICAL MODELS .. 40

6.2.1 Topology .. 41
6.2.2 Geometric Representation of Spatial Objects .. 41
6.2.3 Spatial Abstract Data Types ... 44

6.3 DATA ACCESS METHODS... 46
6.3.1 Traditional Access Methods.. 46
6.3.2 Spatial Access Methods... 50

PART III: WEBGIS PROTOTYPE

7 METHODS... 55
7.1 REQUIREMENTS.. 55
7.2 DATA.. 56
7.3 SOFTWARE COMPONENTS OF THE PROTOTYPE.. 57

7.3.1 Basic Libraries .. 58
7.3.2 Apache Web Server ... 59
7.3.3 PHP ... 59
7.3.4 PostgreSQL ... 59
7.3.5 PostGIS.. 61
7.3.6 UMN MapServer ... 63

7.4 ARCHITECTURAL OVERVIEW AND CONFIGURATION... 65
7.4.1 Basic Setup .. 66
7.4.2 Setup of the Prototype ... 70

7.5 PROGRAMMING .. 70
7.5.1 Drawing Layers... 70
7.5.2 Dynamic Legend.. 71
7.5.3 Information and Query page... 73

8 THE WEBGIS SNP PROTOTYPE.. 75
8.1 BASIC FUNCTIONS, TOOLS AND ELEMENTS... 76

8.1.1 Main Map .. 77
8.1.2 Reference Map... 78
8.1.3 Graphic Scale .. 78

8.2 IMPLEMENTED FUNCTIONS AND TOOLS... 78
8.2.1 Dynamic Legend.. 78
8.2.2 Information and Query Page .. 79

8.3 EXAMPLE USE CASE .. 81
8.4 USE AND ROLE OF CLASSIC MAP ELEMENTS IN WEB MAPS... 86

8.4.1 The Legend and the Concept of Status and Visibility... 86
8.4.2 Numeric and Graphic Scale.. 87
8.4.3 Other Elements .. 88

8.5 DISCUSSION AND EVALUATION ... 88
9 CONCLUSIONS ... 91

9.1 ACHIEVEMENTS.. 91
9.2 INSIGHTS... 92
9.3 OUTLOOK ... 92

DATA... 103

List of Figures V

LIST OF FIGURES

FIGURE 1: HISTORICAL OVERVIEW... 5
FIGURE 2: MONOLITHIC VS. 3-TIER ARCHITECTURE .. 6
FIGURE 3: MAP USE CUBE .. 11
FIGURE 4: TYPES OF WEB MAPPING APPLICATIONS .. 14
FIGURE 5: CUBE OF WEB MAP TYPES... 19
FIGURE 6: LOCATION OF THE PROTOTYPE WITHIN THE CUBE OF WEB MAP TYPES 23
FIGURE 7: STANDARD 3-TIER ARCHITECTURE.. 31
FIGURE 8: DATA STORAGE ARCHITECTURE ... 35
FIGURE 9: ALTERNATIVE DATA STORAGE ARCHITECTURES ... 36
FIGURE 10: TOPOLOGICAL RELATIONS BETWEEN TWO REGIONS .. 41
FIGURE 11: SPATIAL DATA MODELS .. 42
FIGURE 12: GEOMETRIC REPRESENTATION .. 44
FIGURE 13: SPATIAL AND GEOGRAPHIC DATA MODEL.. 45
FIGURE 14: BINARY SEARCH METHOD... 47
FIGURE 15: INDEXING WITH A DENSE INDEX.. 48
FIGURE 16: INDEXING WITH A SPARSE INDEX .. 48
FIGURE 17: BINARY TREE ... 49
FIGURE 18: FIXED GRID .. 51
FIGURE 19: SPATIAL INDEXING WITH A LINEAR QUADTREE .. 52
FIGURE 20: PROTOTYPE SOFTWARE COMPONENTS.. 57
FIGURE 21: PROTOTYPE SYSTEM ARCHITECTURE.. 65
FIGURE 22: SIMPLIFIED HTML TEMPLATE FILE .. 67
FIGURE 23: SIMPLIFIED TEMPLATE FILE WITH PHP CODE... 68
FIGURE 24: SIMPLIFIED MAP FILE .. 69
FIGURE 25: DYNAMIC LEGEND... 71
FIGURE 26: THE WEBGIS PROTOTYPE APPLICATION .. 75
FIGURE 27: MAIN MAP IN JAVA MODE... 76
FIGURE 28: INFORMATION PAGE... 80
FIGURE 29: DYNAMIC ATTRIBUTE QUERY (1): SELECTION OF THE THEME... 81
FIGURE 30: DYNAMIC ATTRIBUTE QUERY (2): SELECTION OF THE ATTRIBUTE...................................... 81
FIGURE 31: DYNAMIC ATTRIBUTE QUERY (3): PRODUCED SQL STRING.. 81
FIGURE 32: DYNAMIC ATTRIBUTE QUERY (4): TABLE WITH QUERY RESULTS 82
FIGURE 33: DYNAMIC ATTRIBUTE QUERY (5): VISUALIZATION OF QUERY RESULTS............................. 83
FIGURE 34: DYNAMIC ATTRIBUTE QUERY (6): REFINED SQL STRING.. 84
FIGURE 35: DYNAMIC ATTRIBUTE QUERY (7): VISUALIZATION OF SUBQUERY RESULTS....................... 85
FIGURE 36: DYNAMIC ATTRIBUTE QUERY (8): AGGREGATION OF SUBQUERY RESULTS........................ 85

List of Tables VII

LIST OF TABLES

TABLE 1: GEOMETRIC DATA TYPES IMPLEMENTED IN POSTGIS ... 62
TABLE 2: OPERATORS IMPLEMENTED IN POSTGIS... 62
TABLE 3: JAVA MODES ... 76
TABLE 4: NAVIGATION FUNCTIONS.. 77
TABLE 5: TOOLS.. 77
TABLE 6: LEGEND FUNCTIONS.. 79

Abbreviations IX

ABBREVIATIONS

ADT Abstract Data Type
API Application Programming Interface
ASP Active Server Pages
CGI Common Gateway Interface
DBMS Database Management System
DML Data Manipulation Language
DOM Document Object Model
ER Entity-Relationship Model
GEOS Geometry Engine � Open Source
GIS Geographic Information Systems
GiST Generalized Search Tree
GML Geography Markup Language
GUI Graphical User Interface
GVIS Geographic Visualization
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JDBC Java Database Connectivity
JSP Java Server Pages
JTS Java Topology Suite
MBB Minimum Bounding Box
OGC Open GIS Consortium
PHP PHP: HyperText Preprocessor
RDBMS Relational Database Management System
SAM Spatial Access Method
SNP Swiss National Park
SQL Standard Query Language
SVG Scalable Vector Graphics
UMN University of Minnesota
W3C World Wide Web Consortium
WMS Web Map Service
WWW World Wide Web
XML Extended Markup Language

Abstract XI

ABSTRACT

While the usage of internet maps has grown in the last years, GIS and Cartography

have evolved technically. Today, many software solutions for the publication of

web maps are available. Some of them are commercial and proprietary; others are

non-commercial and have been developed for only one specific purpose and data

type. Furthermore, the Open Source community has provided many tools, enabling

the setup of multi-component solutions following open standards.

Part I of this thesis includes the introduction and shows the current state of the art

in Web Mapping. An own approach is worked out by introducing a new cubic

model for the categorization of the types of web maps, followed by an analysis of

deficiencies, the conclusions for this thesis and finally the research objectives.

Part II examines the theoretical background of WebGIS architecture and shows

how GIS functionality can be implemented on both, client-side and server-side.

Also the topic of data storage and Extended Relational Databases is covered

intensively.

Part III describes the WebGIS SNP Prototype that has been implemented for the

visualization of GIS data of the Swiss National Park. The resulting Web Map is

interactive, usable intuitively and provides an adaptive interface. The basic

functionality has been extended with a dynamically programmed Information and

Query Page, enabling the user to perform attribute queries and visualizing the

results in the map. Furthermore, specific aspects concerning the use of classic map

elements in Web Maps have been addressed. The concept of Status and Visibility is

newly introduced as a result. In the consequence, a dynamically programmed

legend with dual functionality has been implemented.

The WebGIS SNP Prototype has shown that it is possible to set up a working

interoperable multi-component application consisting of Open Source software

products for the visualization of spatial data.

Chapter 1 1

PART I: INTRODUCTION AND APPROACH

1 Introduction

While internet usage has grown from 61 million to 625 million internet users in the

period of 1996 to 2001, the growth rate of internet map usage has been even higher

[Pet01]. At the same time, Geographic Information Systems (GIS) have evolved

from universal tools for specialists to systems that can be used with only marginal

expert or programming knowledge [DZ99]. In the last few years, most commercial

GIS products have been enhanced with map servers and now form the new category

of Online GIS solutions. Furthermore, also stand-alone Map Servers that serve as a

powerful tool for web mapping purposes are available.

1.1 Motivation

While more and more organizations offer more and more web maps of all kinds,

only few national parks have done so yet. In a qualitative analysis conducted in

March 2002, the World Wide Web (WWW) has been searched for the websites of

national parks. There are countless national parks, and many of them do not have a

website, especially the ones located in Africa, Asia and South America. In North

America, the term �National Park� is used in a broader meaning and includes

historic sites or recreational areas where fishing or hunting is allowed. For this

reason, only European parks have been considered. Of the total 59 parks found, 16

websites were not loadable, mostly because of outdated URL�s. From the remaining

43, 5 consisted of text only, 9 included texts and images, 7 consisted of text and one

or several static or clickable maps, and 22 had text, images and maps together. This

shows that if National Parks are present on the WWW, they often use static view-

only maps for promotion purposes. The maximum of interactivity in those maps is

provided by clickable maps, where the result is a static map in a different scale.

2 Introduction

It is therefore a challenge to visualize the GIS data of the Swiss National Park

(SNP) interactively on the World Wide Web. In a survey among the users of the

GIS of the Swiss National Park, over 40% requested the possibility to interactively

generate maps of the GIS data, and 29% were interested in performing easy

analyses online [SNP97]. Therefore, the setup of a web mapping application that

can be used intuitively and that includes certain simple GIS functions was chosen

as a case study for this diploma thesis. Considering the special character of the GIS-

SNP [AB92] with two physical locations (Zernez and Zurich), the GIS data, the

outdated available software and the financial aspects, a solution from the public

domain (Open Source) would be desirable.

The main goal of this thesis project is to set up a working prototype of a web

mapping application in order to visualize the GIS data of the Swiss National Park.

The more detailed research objectives will be specified at the end of chapter 3

(section 3.3), in response to the state of the art (chapter 2), the analysis of

deficiencies (section 3.1) and the conclusions drawn (section 3.3).

1.2 Thesis Organization

Part I of this thesis consists of three chapters. An introduction and the motivation

for the thesis project are located in the first chapter, including the organization of

this thesis. The second chapter describes the sate of the art; it gives a short

historical overview of GIS, the internet and WebGIS, treats the topic of open

systems and standards, presents approaches in Web Mapping as well as different

kinds of categorizations and ends with some definitions. In the third chapter, the

approach of this thesis is worked out. An analysis of deficiencies is performed; a

new cubic model is introduced, requirements for Web Maps are considered, the use

of commercial and open systems is discussed and research challenges are

identified. This leads to conclusions and the setup of the research objectives for this

thesis.

Chapter 1 3

Part II is dedicated to WebGIS architecture, supplying the theoretical aspects that

are important for understanding how WebGIS applications work and how GIS

functionality can be provided over the internet as a platform. The implementation

of client-side technology and GIS functionality is addressed in chapter four. Server-

side technology and GIS functionality is covered in the fifth chapter. Storage and

retrieval of spatial data in Extended Relational Database Management Systems is

the topic of chapter six.

Part III is the practical part of the thesis. In chapter seven, the requirements for the

prototype are specified, the used data are described and the software components of

the prototype are listed, as well as the architectural overview, configuration and

special programming issues. The prototype application and the implemented

functionality are presented in chapter eight, where also a discussion and evaluation

takes place. Finally, the conclusions of this thesis are the topic of chapter nine.

Chapter 2 5

2 GIS, the Internet and WebGIS

2.1 Brief historical overview

GIS evolved since the 1960s, and four main phases of development can be

identified: innovation (research and development by some few pioneers, 1960-

1970), the start of the diffusion (mainly in research and administration agencies,

1970-1980), diffusion (adaptation by commercial users, 1980-1990) and the boom

(maturity of the software, time of the users, 1990-today) [DZ99].

Paper maps as the final product of cartography used to work (and still do so) as a

medium for storage and presentation of spatial data. These two functions were split

with the introduction of on-screen maps and their corresponding databases, which

led to new presentation options like 3D and animated maps [KO96].

Both, the development of GIS and computer cartography, have been parallel

processes [Jon97], [DZ99]. Therefore, with the rise of the internet, the next step

was to make the new computer technologies available in desktop GIS and computer

cartography. Figure 1 shows a historical overview of the development in

cartography and GIS, based on the sources cited above and [VBW+00].

Time

1960 1970 1980 1990

Innovation Start of
Diffusion

Diffusion Boom

GISGIS

Web
Cartogr.
Web
Cartogr.

Web
GIS
Web
GIS

CartographyCartography

Computer CartographyComputer Cartography

Figure 1: Historical Overview

6 GIS, the Internet and WebGIS

Traditional Standalone GIS applications consist of one software package running

on one machine, with geodata stored at the same machine (monolithic architecture,

Figure 2a). Today, other characteristics are required, since many contributors and

users may be involved. The main difference between a Standalone and an Online

GIS is the separation of the user interface, processing and data storage. These

elements are normally distributed over several machines. While the user interface

(receiving information and displaying it for the user) is located at the web client

(client-side), the processing (supplying the information) and the data storage take

place at the web server (server-side). [GB01]

As illustrated in Figure 2b, a presentation tier, an application tier and a database tier

can be identified [VBW+00], [Puc01], [Str01], [HSS01]. The standard 3-tier

architecture is not only valid for Online GIS Systems, but is followed by most

WebGIS applications.

Database

Processing

User Interface

Standalone GIS

Monolithic
Architecture

User Interface

Processing

Database

Presentation

Application

Data Access

Online GIS

3-Tier Architecture

a) b)

Figure 2: Monolithic vs. 3-Tier Architecture (partially
after [Str01])

Chapter 2 7

Looking at the history of the development of Online GIS applications, three phases

can be distinguished [Str01]:

Generation 0: Standalone Implementations of server-side applications,

mostly tailored for particular datasets and specifically developed for

individual tasks.

Generation 1: Geoinformation-Web-Architectures, i.e. Map Servers on the

server-side and Plug-Ins on the client-side, mostly based on closed

architectures. Every Map Server requires a specific client.

Generation 2: Open systems that include interfaces based on standards

guaranteeing integrated solutions.

The ongoing efforts to make spatial information accessible worldwide make clear

that a dynamic process is changing the traditional understanding of GIS

applications and services.

2.2 Interoperability and Standards

The Open GIS Consortium (OGC), currently consisting of more than 230

companies, government agencies and universities, has developed several publicly

available specifications for the field of geoprocessing, such as the Geography

Markup Language (GML) Implementation Specification, the Simple Features

Specification for SQL or the Web Map Service (WMS) Implementation

Specification [OGC02a]. An example of a WMS and GML based interoperable

web mapping system has been described in [SVS+01].

2.2.1 WMS Implementation Specification

The specification is described by the OGC as following: �This OpenGIS® Standard

specifies the behavior of a service that produces geo-referenced maps. This

standard specifies operations to retrieve a description of the maps offered by a

service instance, to retrieve a map, and query a server about features displayed on a

8 GIS, the Internet and WebGIS

map� [OGC02b]. The specification shall support interoperable solutions and enable

systems to access spatial information from different sources [OGC02a], [Str01].

Three operations are defined by the specification: GetCapabilities returns service-

level metadata, GetMap obtains a map image and GetFeatureInfo (optional) returns

information about particular features shown on a map. The first operation makes

the creation of customized maps consisting of several map layers requested from

distributed Map Servers possible. The aggregation of the data supplied by the

different Map Servers into one service is handled by Cascading Map Servers.

The specification also has its limitations. The standard is only applicable to

pictorial renderings of maps in a graphical format, and not to retrieval of feature or

coverage data values. Besides that, the GetFeatureInfo operation, which enables a

Web Map Server (WMS) to answer queries about feature information, is only

optional.

2.2.2 GML Implementation Specification

�The Geography Markup Language (GML) is an XML encoding for the modeling,

transport and storage of geographic information including both the spatial and non-

spatial properties of geographic features� [OGC02c]. Implementers can either store

geographic application schemas in GML, or use GML only for schema and data

transport (by converting the data from another storage format on demand). The

kinds of objects provided in version 3.0 for describing geography include features,

coordinate reference systems, geometry, topology, time, units of measure and

generalized values.

2.2.3 Simple Features Specification For SQL

The definition of a standard SQL schema that supports storage, retrieval, query and

update of simple features is the purpose of this specification. Simple features have

spatial (geometry valued) and non-spatial attributes. They are stored as rows in

tables of a Relational Database Management System, called feature tables. Two

target SQL environments are distinguished: SQL92 and SQL92 with Geometry

Chapter 2 9

Types. Both Implementations extend the SQL92 information schema to support

standard metadata queries returning the list of features in a database, the list of

geometry columns for a feature table and the spatial reference system for a

geometry column. [OGC99]

2.3 Approaches in Web Mapping

Two major approaches have � until now � mostly been considered for the creation

of web based maps. One of them is the use of commercial software. Besides all

advantages of a full featured software product, also several disadvantages must be

considered. In most cases they concentrate on general applications and purposes, do

not allow an optimization of the maps or explorative analyses and are quite

expensive [CSW99], [Für01]. In addition, there is dependence from a commercial

vendor, since proprietary solutions are bound to specific products or environments

such as database servers or Internet Map Servers [CSW99].

The other approach focuses on the development of new, non-commercial web

based visualization software [CSW99], [CSW00]. One example is the

�CartoApplet� [Cec99], which has been designed at the Department of Geography

at the University of Zurich for the cartographic visualization of statistical data on

the internet. It has been extended through �EVisA� (Enhanced Visualization

Application) [She00]. The goals of these projects were the development of a

cartographic visualization tool for web clients with concentration on a specific data

type (statistical data on areas), focusing on cartographic functionality, and the

minimization of a dependence from commercial and non-standardized software.

Such tailored visualization tools are suitable for specific applications that are

mostly developed for a special audience. They are justified under the conditions

that the functionality is designed for a particular purpose, the application

concentrates on optimized cartographic functions, explorative functions are offered,

the source code is open and the software avoids the use of proprietary components

[CSW99], [CSW00]. The consequence of these conditions is that each application

10 GIS, the Internet and WebGIS

with all its functionality has to be developed from scratch, especially because no

components from commercial systems can be used.

2.5 Categorizations in Web Mapping

Many authors use different kinds of terms related to web mapping, which may lead

to confusion. Therefore, this section gives a systematic overview and examines

three different kinds of categorizations. But first of all it must be considered that

web mapping always has something to do with visualization, which is a widely

usable term. Scientific visualization has got the meaning of computer technology

for making scientific data and concepts visible. As discussed in [Mac95], �the

critical aspects of visualization as a concept are not even fixed for individual

researchers�. Thus, it is suggested regarding geographic visualization (GVIS) as a

fuzzy category. According to [Mac94], the terms cartographic visualization and

GVIS are both used for spatial visualization in the context of scientific research in

earth sciences, in which maps are used as a primary tool. GVIS is hereby the better

term to use, since it implies a broader spectrum of possibilities, for example the use

of remotely sensed images together with maps.

As there are many approaches of how to handle the concept of GVIS, in the

following subsections of this chapter three of them are used to build a chain

consisting of map use (goals), mapping tools (applications) and map categories.

However, there are no solid borders within the classifications, and especially

placing applications into categories is difficult.

2.5.1 Types of web mapping goals

In a first step a model is needed which allows to separate different kinds of map use

for the identification of the visualization approach that has to be chosen for the

individual goal.

[Mac94], created a three-dimensional model of human � map interaction space. The

so-called map-use cube (Figure 3) consists of three continua: �from map use that is

private (tailored to an individual) to public (designed for a wide audience); map use

Chapter 2 11

that is directed toward revealing unknowns (exploration) versus presenting knowns

(presentation); and map use that has high interaction versus low interaction�

[Mac95].

Interaction

p
ri

v
a
te

p
u

b
l i c

unknown

known

high low

A
u

d
ie

n
c
e

Data
Relatio

nsExplorationExploration

PresentationPresentation

AnalysisAnalysis

SynthesisSynthesis

V
is

u
a
l i
za

t i
o
n

C
o
m

m
u
n
i c

a
t i

o
n

V
is

u
a
l i
za

t i
o
n

C
o
m

m
u
n
i c

a
t i

o
n

Figure 3: Map Use Cube (after [Mac94], [MK01])

As the model has evolved over the years, the three axes of the cube have been

(re)named. Audience used to have no name in the original model and distinguishes

between individual map use for own needs and previously prepared maps for a

public audience. Data relations used to be unnamed as well and means whether a

user is generally searching some information or accessing particular spatial

information. Interaction used to be called �human � map interaction� and refers to

the possibility for the user to change the map presentation.

In this space of map use, GVIS can be identified in the highly interactive, private

and exploratory corner, while on the opposite cartographic communication is

placed in the corner with the contrary characteristics. Starting in the former corner,

exploration is referred to as a process, in which the use starts without much

knowledge about the underlying data, but interactivity provides the tools for the

12 GIS, the Internet and WebGIS

search of structures and trends. On the line to the opposite corner, also analysis and

synthesis can be defined between the extremes. Presentation in a traditional sense

for public use and based on known data is placed in the latter corner.

This model fits with the model for map-based scientific visualization defined in

[DiB91], which makes a difference between private visual thinking and public

visual communication: The process of scientific research starts with a few

specialists exploring their data for finding answers to their questions. With the work

progressing to a wider circle of peers, they are communicating ideas to others. This

leads to a dissemination of the research from the private realm of scholarly inquiry

to the public realm of scholarly and popular communication. The described

exploratory, confirmatory, synthetic and presentational visual methods can be

found again as spheres in the map-use cube (exploration, analysis, synthesis and

presentation). Both models have in common that the number of representation

options is reduced as the public end of the visualization continuum is approached

[Mac94]. It is therefore important to see that maps are � in this context � more than

making data visible. They are instruments in the scientific process of cognition that

help to create new ideas [DiB91], [MK01].

2.5.2 Types of web mapping applications

In a second step, it is important to distinguish the types of applications that can be

used for the chosen goal.

A common organization of application categories in Web GIS is a functional

categorization [Gar99], [Für01]:

Geodata Server: Geodata from an archive can be accessed and searched.

Download services for offline processing on the client side are provided

(Figure 4, 1). An example can be found at the website of the United States

Geological Survey (USGS), http://www.usgs.gov.

Chapter 2 13

Map Server: Static or interactive maps are served after a request from the

client. Map Server software is running on the server-side, often as a CGI

program.

Static Map Server: Previously prepared raster maps (often exported from

a Desktop GIS) are offered to the user (Figure 4, 2a).

Visualization Map Server: A new map is created with every request

from the client, but the concentration of the functionality is on the

cartographic visualization of geodata. No specific GIS functionality is

offered (Figure 4, 2b).

Interactive Map Server: Similarly to Visualization Map Servers, maps

are served over the internet. In this case, the user can change several

parameters of the map. Attribute and/or spatial queries can be offered

(Figure 4, 2c).

Map based Online Information Systems: Thematic or spatial queries are

offered via text or interactive input through the map. The concentration lies

on attribute queries from a database (Figure 4, 3). Examples are online route

planners and traffic information systems, e.g. http://www.mapquest.com.

Online GIS: In the last years, all major vendors of commercial GIS software

have released an Online GIS version of their products. Thus, most Desktop

GIS functions are available over the internet [FRK+01] (Figure 4, 4). Many

examples can be found at http://www.geoplace.com/gr/webmapping.

GIS Functions Server: Remote access to the functions of a GIS Server is

offered. The request and the data have to be sent from the client and are

processed on the server. The results (not necessarily a map) are sent back to

the client (Figure 4, 5).

A web mapping cube similar to the one discussed previously has been proposed in

[Her01]. The first axis is the database connectivity, which is represented by the two

possible values d and D, depending on the presence of a database connection. The

14 GIS, the Internet and WebGIS

second axis shows the degree of interaction with the values of i and I, depending on

the amount of interaction possibilities. The third axis describes visualization, which

is not used in the sense of GVIS but means how adequate (v or V) the visual

communication of a theme is. Using this cube, the above categories of web

mapping applications can be placed within the three-dimensional space (Figure 4).

2c2c

44

Data Base Connectivity

v
V

i

I

d D

V
is

u
a
l i z

a
t i
o

n

Interactio
n11

2a2a

2b2b
33

55

Figure 4: Types of Web Mapping Applications 1) Geodata
Server, 2a) Static Map Server, 2b) Visualization Map
Server, 2c) Interactive Map Server, 3) Map based Online
Information Systems, 4) Online GIS, 5) GIS Functions
Server (enhanced after [Her01])

Geodata Servers (1) provide no interaction, database connectivity or visualization.

Static Map Servers (2a) are a little bit stronger on the visualization side, since they

mostly provide raster maps that have been exported from a desktop GIS and deal

with a certain topic. Visualization Map Servers (2b) are, as implied by their name,

providing good visualization, but do not support much interaction to the user. They

can be connected to a database, but not necessarily have to. Interactive Map Servers

(2c) have similar characteristics, but are interactive. Map based Online Information

Systems (3) supply much interaction and are connected to a database, but the

Chapter 2 15

visualization is standardized. Online GIS (4) are interactive, concentrate more on

data analysis than visualization and can be connected to a database. GIS Functions

Servers (5) have similar characteristics like Geodata servers, except that there is

more interaction due to the fact that parameters are submitted with a request and the

according results are sent back.

2.5.3 Types of web maps

With the chosen goal and application, the visualization approach has also to

consider which type of web map is the appropriate form of the cartographic

product.

The types of web maps are discussed in [Für01], where the original classification of

[Kra01a] was expanded. The latter is, in a first level, divided into static and

dynamic maps. In a second level, each of these divisions is subdivided into view

only and interactive maps. The expanded classification adds a new top layer,

consisting of maps produced before or after request.

Maps that have been produced before user request have been finished by the

cartographer first and then made available on the internet. On the contrary, maps

that are produced after a user request will be created following the rules previously

set by the cartographer. Static maps are unchangeable (frozen). Dynamic maps

show a movement (animation). View only maps can not be changed in their

presentation by the user, while interactive maps provide some kind of interaction

possibilities to the user [Für01]. Interactivity is discussed heterogeneous in web

mapping literature. For example, in [Dic01], static and view only maps are put into

the same category. It is postulated that zoom and pan are user actions but no

interactive elements, since they are the same as viewing a paper map from further

or closer distance; the pixels are just enlarged and no additional information is

provided, while interaction must make new information or map elements visible.

According to [Ric98], the zoom function in static maps can at least make fonts

more readable. The classification of [Kra01a] and [Für01] on the other hand implies

16 GIS, the Internet and WebGIS

implicitly that static maps can be view only or interactive, since already the request

of a map can be interpreted as an interactive element.

2.6 Definitions / Terms and Technologies

There exists an amount of terms related to web maps. But what is �web mapping�,

and what is the difference between �Web GIS�, �Online GIS� and �Internet GIS�?

Many authors use the latter terms synonymous, which is sometimes leading to

confusions. In this section, some of the most important terms are listed with the

attempt to explain for a better understanding and to define them at the least for the

context of this thesis.

Web Map: Basically, every map available on the WWW can be called a web

map. This includes the simplest version of a scanned paper map that is

integrated in a website [Kra01a]. Web Maps can also include some classical

GIS functionality (like querying attribute data by clicking the map), which

expands the classical understanding of cartography as a process unrelated to

data handling.

Web Mapping: The creation, distribution and use of web maps [Asc00] is

called Web Mapping and implies the process of creation rather than the

product [Dic01] or the application that has been used. Visualization aspects

are the main subject of mapping [Dic01].

Web GIS: A Web GIS application includes some more GIS functions than a

Web Map. An important difference is the access to attribute data. The user

should be able to perform functions like attribute queries, search functions,

area and distance measuring or the construction of buffer zones [Dic01].

Online GIS: An Online GIS application provides the functionality of a

standalone Desktop GIS program, but online via the internet. The difference

is that user interface, processing and data storage separated and mostly

located on different servers.

Chapter 2 17

Internet GIS: This can be regarded the top level category of all applications or

systems providing GIS functionality over the internet, although most

applications only use the WWW.

Map Server: The term can be understood from different points of view: If, in a

network with several computers, one machine has the only purpose of

hosting the Map Server program, this computer can be called a (hardware)

Map Server. But mostly, the term is used for Map Server programs

(software) that do the map creation and perform some server-side GIS

functions. The basic functions of a Map Server are visualization, navigation

and query [Für01]. Map Server Software can also be distinguished

concerning economic and legal aspects: Commercial Map Servers are

proprietary, while Open Source Map Servers are free of cost and their

source code can be downloaded and modified. Depending on functional

aspects, the three subcategories of Static, Interactive or Visualization Map

Servers can be applied.

GIS Functions: Zoom and pan within a map are not considered true GIS

functions [Dic01]. Some GIS functionality like data acquisition and data

processing are not a particular issue in Web GIS, and visualization

functionality (see cartographic functions) is treated here separately. Twenty

universal GIS operations have been derived by [Alb96], organized in six

categories: Search (interpolation, thematic search, spatial search,

classification/reclassification), Location Analysis (buffer, corridor, overlay,

Thiessen/Voronoi), Terrain Analysis (slope/aspect, catchment/basins,

drainage/network, viewshed analysis), Distribution/Neighborhood

(cost/diffusion/spread, proximity, nearest neighbor), Spatial Analysis

(multivariate analysis, pattern/dispersion, centrality/connectedness, shape)

and Measurements. [Sch02] also proposes a list of GIS analysis functions,

consisting of: Measure, Query (identification, search by attribute, search by

geometry), Reclassification (aggregation: dissolve, merge), Overlay

(quantitative, qualitative), Buffering, Neighborhood (filtering,

18 GIS, the Internet and WebGIS

cost/diffusion/spread), Spatial Interpolation (deterministic, stochastic),

Terrain Analysis (slope, concavity, viewshed, watersheds, catchment

basins), Networks (shortest path, location-allocation, trace lines), Statistics

(univariate, bivariate, multivariate). However, not all GIS functions are

suited for all kinds of data and projects.

Cartographic Functions: The most important cartographic functions are

changes of the symbology and layer control. Also exploratory data analysis

can be considered a cartographic function [Sch02].

Chapter 3 19

3 Thesis Approach

3.1 Analysis of Deficiencies

The second chapter of this thesis has described the state of the art in Web Mapping.

This chapter includes an analysis of the important points, shows where the gaps are

and draws the conclusions.

3.1.1 A new Cubic Model

The categorization of web maps presented previously lacks a graphical

visualization for better understanding. Thus, a new cubic model for the organization

of the types of web maps is proposed here: The Cube of web map types (Figure 5).

33

Interaction

s
ta

ti
c

d
y
n

a
m

i c

pre-

on

high low

A
n
im

a
t i
o

n

Creatio
n tim

e

designed

demand

11

4422

Figure 5: Cube of Web Map Types 1) Static Vector maps,
2) Dynamic vector maps, 3) Static raster maps, 4)
Dynamic raster maps

The dimension of animation considers if a map has static or rather dynamic

character. Interaction (manipulation possibilities for the user) can be high or low.

20 Thesis Approach

The creation time of a map is also included into the model, making a difference

whether a map has been pre-designed before being accessible over the web or if the

map creation happens on demand (upon a user request [Cec03]). Static vector maps

(1) implicitly provide interactivity (e.g., adaptive zooming). Dynamic vector maps

(2) are similar, but include some kind of animation (e.g., moving map elements).

Static raster maps (3) are not interactive, since they are mostly a raster image of

another cartographic product (e.g., a screenshot or scanned). Dynamic raster maps

(4) include animation (e.g., movies).

However, all the categorization models presented have in common that there are

�no clear boundaries� [Mac94] inside of the cubes, and that a classification can

only be �a snapshot in time, (�) and certainly not carved in stone� [Kra01a]. This

is because quantitative aspects are missing and every distinction has to be

qualitative and finally subjective.

The only clear distinction that can be made in the above model is the one of the

creation time. A map has to be created either before a user request, or after, but

there is no possibility in between. On demand web mapping is a challenge, because

maps are created automatically upon user request, meeting the user�s preferences as

well as the technical display specifications [Cec03]. This is why the most

interesting space in the cube is on its back side (Figure 5, marked with a hatching).

Dynamic maps on demand are generally a very new thing; most animated maps are

produced before user request [Für01]. Static maps with low interaction on demand

are seldom, e.g. maps that have been produced by a GIS Functions Server. Mostly,

static maps on demand include interactive elements. This is the area where most

Web Maps produced by Web GIS applications (e.g., Map Servers) are located.

3.1.2 Requirements for Web Maps

Since, with the introduction of computer cartography and databases, the classical

dual map functionality of presenting and storing spatial data has been split [KO96],

[MK01], the new requirements for maps are presentation, exploration and

communication. This leads to the requirements for new mapping tools: Technical

Chapter 3 21

aspects of map production are simplified through new user interfaces or even

automated, which requires a new degree of intelligence. For getting an intuitive

graphical user interface towards the data, also interactivity must be provided.

Because maps are presented and explored over the WWW, and also communication

about those maps happens over the internet, internet-ability is required, too. [SR01]

Internet-ability must be provided by using up to date techniques and programming

languages. This also enables interactivity. Intelligence in user interfaces does not

only mean that an application must be usable intuitively, but also that in the sense

of dynamic programming. This means that the application reacts on changes in the

underlying data or on inputs the user has given, and modifies the user interface

accordingly. This behavior is seldom in Web Maps, since most developers tailor the

application to the underlying data.

3.1.3 Commercial Software vs. Open Systems

As already mentioned, most vendors of commercial GIS software products have

released their own Online GIS solution. It is not easy to get an overview over all the

many products and their functions. One website listing some of the products

currently available on the market is http://www.geoplace.com/gr/webmapping.

While, at the time of beginning this thesis, all products offered basic functionality

like pan, zoom, and attribute queries, more complex GIS analysis functions had to

be programmed [LR00]. Additional GIS functionality that can be found in

commercial Online GIS software is in most cases not necessary for Web Mapping

purposes [Für01], or partially not suitable, e.g. for Atlas Information Systems with

environmental vector data [Sch02], but also for related cartographic applications.

The differences between the products are based on how much the cartographic

developer can influence the design of the application [Für01]. Also the costs of

several thousand US$ for each product and the dependence from a commercial

vendor must be considered.

There is a trend in recent development from closed and proprietary systems towards

open systems with standardized interfaces. Yesterday�s monolithic GIS applications

22 Thesis Approach

with file based data storage already have become today�s 3-tier client-server models

with database connection. Future development will lead to distributed applications

with open interfaces. Not only the data will be distributed, but also the software

will consist of interoperable components. [Str01]

Commercial products do not only have the disadvantage of their high costs, but

they also are inflexible. Their source code and thus their functionality can not be

changed because of their terms of license. An adaptation of the software towards

the user�s needs is impossible. Technical support is available, but in the case of a

malfunction in the software the source of error can not be tracked down by the user

and the problem will � if ever � only eventually be solved in the next release. Open

Source software does in the opposite give the opportunity to find and solve

problems to expert users, who contribute to the community by submitting their

patches for inclusion into the next release and by giving advice to other users

through the mailing lists. Furthermore, when the work for this thesis project started,

there was no up to date version of commercial Online GIS or Web Mapping

software available at the Department of Geography of the University of Zurich.

3.1.4 Research Challenges

With the use of the WWW as a medium for the visualization of geographic data,

new cartographic questions arise. While research was first primarily done about the

role of the internet as a medium for the distribution of maps and the aspects of the

use of Web Maps, it finally dealt with questions about the design and realization of

cartographic web applications [Gar01]. Modern cartography deals with a complex

process of geospatial information organization, access, display and use � thus

problems in human-computer interaction and in enabling dynamic map and map

object behaviors shift into the focus of cartographic design and research [MK01].

The ICA Commission on Visualization and Virtual Environments therefore

identifies four research challenges: Representation, Visualization-Computation

Integration, Interfaces and Cognitive/Usability Issues [MK01].

Chapter 3 23

As far as it is known to the author, no research has been done yet about the classic

map elements in interactive, static, on demand Web Maps. This opens two

questions that can be identified as research challenges in modern Web Cartography:

How are classic map elements used in interactive, static, on demand Web Maps?

And what is their role in those Web Maps? This thesis project attempts to

contribute to developing infrastructure enabling to answer these questions.

3.2 Conclusions

The conclusions from the state of the art and the above analysis of deficiencies are

as follows:

• Dynamic on demand Web Mapping is a very new subject of research,

but the available GIS data of the Swiss National Park do not

enable or require such technology. The prototype application will

thus take place in the interactive and static corner of the Cube of

Web Mapping Types (Figure 6).

Interaction

s
ta

ti
c

d
y
n

a
m

i c

pre-

on

high low

A
n
im

a
t i
o

n

Creatio
n tim

e

designed

demand

Proto-
type

Proto-
type

Figure 6: Location of the Prototype within the Cube of
Web Map Types

24 Thesis Approach

• Dynamics can not only be provided in the cartographical sense of

animation in maps. Dynamic programming works with the use of

variables and general cases rather than explicitly naming

everything. This enables the creation of intelligent user interfaces

that automatically adapt on changes.

• The questions identified as research challenges can only be answered

�by doing�, i.e. while implementing the prototype. Only the usage

of Open Source software gives the developer enough control over

the application.

• Concerning the two standard approaches in Web Mapping (use of

commercial software and development of own specialised

applications), a different approach has to be chosen here: It makes

most sense to use a product that has already been developed, but

can be adjusted and extended according to the individual needs.

For most commercial systems, this is impossible because of their

terms of license. The logical consequence is to use software that is

distributed under an Open Source license.

• The only software known to the author that meets the demands

formulated in these conclusions and in the following research

objective is the �MapServer� of the University of Minnesota. It

works well together with the PostgreSQL database, which can be

spatially enhanced with PostGIS. These are all products

distributed under an Open Source license.

Chapter 3 25

3.3 Research Objective

The GIS data of the Swiss National Park shall be visualized by an interoperable

multi-component prototype application with open interfaces:

• The resulting Web Map shall have interactive character.

• Basic functionality (visualization, navigation and query) must be

included.

• The user interface must be usable intuitively.

The chosen Map Server shall be checked for its functionality, which has to be

expanded with additional functionality in order to fulfill the following

requirements:

• Attribute queries must be possible.

• The results of attribute queries should be visualized in the map.

As a conclusion, the following conditions have to be met:

• The underlying data (geometry and attributes) have to be stored in a

database.

• The user interface must be adaptive (the elements of the user interface

adapt to the actual situation).

While the visualization of the data of the Swiss National Park is regarded as a case

study, a use case shall be realized. It will be specified in section 7.1, where also the

requirements for the prototype will be listed in more detail. Furthermore, the

questions about the use and role of classic map elements in interactive, static, on

demand Web Maps have to be addressed �by doing� while designing the graphical

user interface.

Chapter 4 27

PART II: WEBGIS ARCHITECTURE

4 Client-Side Technology and GIS Functionality

In Standalone systems, one monolithic GIS application performs all processes

needed, and the entire user action is stored in the computer�s memory. Because of

the separation of the three tiers, two new problems appear: a) What kind of

functionality should be processed where, and b) How can the user action be

transferred from the user interface to the server.

4.1 Client-Side GIS Operations

Following the approach of providing GIS functionality over the internet as a

platform, the browser�s limited capabilities need to be extended. In the following,

some possibilities of implementing GIS functionality on the client-side are

presented [LR00], [GB01], [Köb01], [Wir01], [W3C03].

4.1.1 HTML

The Hypertext Markup Language (HTML) is used for describing the content of a

webpage. Files written in HTML are requested from the server and transferred via

the Hypertext Transfer Protocol (HTTP) to the client, where they are displayed by

the web browser. HTML documents can include images and hyperlinks, which

make jumping to other documents possible. One simple possibility to implement

geographic queries is the use of image maps. Images included in HTML documents

can not only be just displayed or work as hyperlinks to other documents. They can

also have sensitive areas defined by coordinates of the areas� bounding polygons.

Like this, one image can provide several hyperlinks. Image maps are also called

clickable maps.

HTML is, although specified by the World Wide Web Consortium (W3C), not

browser independent, because the different suppliers of browser software often

28 Client-Side Technology and GIS Functionality

make small changes of additions to the standard. This can lead to problems in

correct data handling with some browsers, which is a serious problem to web

publishers. Dynamic HTML is the newest development but only partly specified

and supported only by the newest browsers. It allows changing elements of a web

document during the presentation, and is not really an extension of HTML but a

combination of new HTML tags and options, style sheets and programming.

4.1.2 JavaScript

JavaScript is an interpreted scripting language and is designed for performing

various functions in web documents, such as providing interactivity, creating

HTML content dynamically and controlling the browser�s behavior. The code is

embedded into HTML documents and interpreted by the browser at runtime (client-

side JavaScript). JavaScript is often used to validate data entered into HTML forms

before submission or to make static HTML documents interactive by using event

handlers that perform an action at a certain event. Client-side JavaScript also plays

an important role in Dynamic HTML programming.

4.1.3 Plug-Ins

Plug-Ins are helper applications that extend the functionality of web browsers. For

example, if vector formats like the Scalable Vector Graphics (SVG) are used, the

appropriate plug-in will take over the interpretation of the data. Plug-Ins have to be

downloaded first and are then installed on the user�s computer. They are specific

concerning platforms, operating systems and browsers, but have the advantage of

being widely available, mostly free of cost and accessing local data. The

disadvantage is the need to download and install the plug-ins the first time a new

format appears, since otherwise the latter can not be interpreted. Plug-ins also need

to be updated if newer versions are available. Besides that, they can be a potential

security problem, because of their location on the local hard disk and access to the

system resources of the client.

Chapter 4 29

4.1.4 Java Applets

Java is an object-oriented programming language. Applets written in Java are

embedded in a HTML document and interpreted by virtual machines implemented

into web browsers. The Java Platform provides a predefined set of classes, which

are available for all Java programs and makes this technology independent from the

underlying operating system. Java applets can only access the server from which

they were downloaded automatically and are therefore secure. Via the Java

Database Connectivity (JDBC), Java can be used to access databases. Though Java

Applets are considered portable across platforms, the virtual machines in web

browsers are sometimes malfunctioning.

4.1.5 SVG

Scalable Vector Graphics (SVG) is a new language for describing two-dimensional

graphics in the Extensible Markup Language (XML). Both XML and SVG have

been specified by the W3C and are therefore non-proprietary formats. More

exactly, XML is providing its Document Object Model (DOM), and SVG is what

could be called an XML dialect. At the moment, the use of SVG still requires a

Plug-In for the web browser. The advantage of SVG is that the processing (map

calculation) takes place at the client. But this requires all geometric data being sent

in readable format (XML) over the internet to the client first, which makes the data

potentially readable for everyone. Nevertheless, SVG is a promising new standard.

Flash as an alternative vector format is, on the opposite, proprietary.

4.2 Client-Side Context Preservation

A problem to web developers in general, but to developers of WebGIS applications

in special, is keeping track of the user�s action. This is caused by the interaction via

the HTTP, which is connectionless (client and server are connected only for the

duration of the transaction) and stateless (the server forgets about the client after the

transaction) [VBW+00], and the separation of the three tiers mentioned previously.

30 Client-Side Technology and GIS Functionality

In multi-user systems, several requests from a user may arrive on the server one

after another, but also other users may send requests at the same time. Thus, an

incoming request must be related to a former for keeping up the context of the

session with a particular user.

Unlike in standalone systems, where all user action is stored in the computers

memory while the GIS application is running, in WebGIS applications this

information needs to be transferred from the user interface to the processing

application.

4.2.1 HTML Forms / HTTP-Request and -Response

Context can be preserved in the easiest way with HTML forms. With every

submission of a form, the respective variables (key-value pairs) are transferred as a

HTTP-Request to the server, where they are processed and a HTTP-Response is

routed back to the browser by the web server. Also images can be defined as form

fields and cause the variables to be submitted after a user�s click on the image. The

image coordinates of the mouse pointer are submitted with the rest of the form

variables, which is how many interactive maps work. The image coordinates need

to be converted into geographic coordinates by the processing application. The

connectionless and stateless nature of the HTTP makes the server forget about a

request that has been processed, thus the variables must be re-submitted with every

new request.

4.2.2 Cookies

JavaScript can also be used to create Cookies, HTML headers that pass data

between server and client. Since HTML is memory-less, the use of Cookies is

another strategy that is often used for preserving the history of the user�s actions,

for example in online shops. The variables and their values are stored on the user�s

hard disk. The fact that users can disable the use of Cookies in the browser�s

preferences makes Cookies unreliable.

Chapter 5 31

5 Server-Side Technology and GIS Functionality

On the server-side, there exist different possibilities of implementing GIS

functionality. Figure 7 shows the classic 3-tier internet architecture. A host

computer connected to the internet has a web server program running and waiting

for requests of websites from a client. After processing, the server sends the

resulting data back to the client via the HTTP. Hosts are often also called servers

because they mostly have the main purpose of running the server program. Since

delivering web pages is the web server�s main role, server-side GIS functionality

needs to be processed by utility programs linked to the web server. The applications

linked to the web server can have access to attribute or spatial data stored either in

files or in a database (DB) via a Database Management System (DBMS).

Web Browser

FilesDB

Web Server

Application

HTTP

Presentation Tier

Application Tier

Data Access Tier

Client

Server

Figure 7: Standard 3-tier Architecture

32 Server-Side Technology and GIS Functionality

5.1 Server-Side GIS Operations

Also on the server-side, there is more than one possibility to add GIS functionality.

However, most WebGIS applications use the Common Gateway Interface (CGI).

The different methods are examined in the following in more detail [LR00],

[GB01], [Köb01], [Wir01].

5.1.1 Common Gateway Interface

Referring to Figure 7, the application processing the spatial data is in most cases a

CGI program. It can access HTTP-Request parameters (key-value pairs for each

variable). The CGI program decodes the incoming data and does the requested

processing. The output is sent back to the client as a HTTP-Response by the web

server. CGI programs can be used to provide database access or can work as map

servers producing interactive maps. The advantages of the use of CGI programs are

independence from a programming language (although PERL is used by most

programmers) and the separation from the web server, which makes erroneous CGI

programs unable to influence the web server. The disadvantage is that processes are

forked, database connections have to be closed and re-established for each request,

and much time is spent to set up the environment for CGI scripts before requests

are processed. This leads to a decreasing performance with an increasing number of

parallel users.

5.1.2 Server Plug-Ins

Server Plug-Ins provide an alternative to CGI programs. They are binary extensions

for web servers, statically linked or dynamically loaded into them on demand, and

enable the parsing of scripting languages on the server-side. Scripts that are

intermixed with the HTML document are parsed on the fly when the document is

requested from the web server. Optionally, whole files with functions coded in a

scripting language and stored on the server can be included. Precompiled

documents can even provide a better performance. This is a powerful method for

creating dynamic web content. Server Plug-Ins can also work as an interface

Chapter 5 33

towards a DBMS. Popular examples of Server Plug-Ins are PHP (acronym for

�PHP: HyperText Preprocessor�), PERL, Active Server Pages (ASP). They have

the advantage of a performance gain compared to CGI programs, since no new

process has to be started with every request. Also, they are universally compatible

with any client, because only HTML is sent back from the web server. However,

they are server-platform-specific and thus vendor-specific.

5.1.3 Other Possibilities

Other methods of implementing GIS functions on the server-side are the web server

Application Programming Interface (API), which allows the extension of the web

server functionality, but also Java Server Pages (JSP) and Java Servlets. Java

Servlets also answer HTTP-Requests, but with improved response times, scalability

and session management. They do not terminate and thus enable persistent database

connections. Java Server Pages go one step further and also separate presentation-

logic and application-logic; JSP are used for presentation and maintained by the

webmaster, while Java Servlets are maintained by the developer.

5.2 Server-Side Context Preservation

There is also a server-side alternative to the use of cookies, which are unreliable

because they can be disabled by the user. When using PHP, session control can be

maintained by a cryptographic random number that is generated by PHP and used

as a session ID (SID). It can be stored as a cookie on the client-side, or be added to

the URL. The SID acts as a key that allows registering session variables which are

stored in files on the server. The advantage is that the application also works for

users who have disabled cookies in their browser settings. The files can be stored in

a temporary directory on the server and can be deleted periodically by an automatic

mechanism (a cron job on UNIX platforms, for instance). Also Java Servlets keep

the context for requests and sessions.

34 Server-Side Technology and GIS Functionality

5.3 Load Balancing

Depending on the place where most of the (geospatial) processing is done, a

difference can be made between server-centric and client-centric paradigms

[VBW+00]. The connectionless and stateless nature of the HTTP initially caused

the thin-client/thick-server approach. The advantage is that there is no need for

additional plug-ins and the platform independence is preserved [Köb01], at least at

the client-side. The application is under almost complete control of the developer,

but has the main disadvantage of a performance problem arising with an increasing

number of requests. Today, with increasing available bandwidth and the rise of

markup languages such as XML, GML or SVG, the development seems to tend

towards thick-client/thin-server systems, where Plug-ins and Applets can be used to

solve the performance problem on server-centric systems.

5.4 Data Storage

Data used in a GIS can be stored in different ways. Early GIS software packages

used to be built on top of proprietary file systems (Figure 8a). Both geospatial and

attribute data are stored in files controlled by the application, and the functions are

defined on this data. This way of data handling is violating the principle of data

independence, which postulates that the user should only interact with a

representation of the data independently from the physical storage. Thus several

problems arise, such as data security (user access control) and concurrency control

(synchronization of concurring access to data from several users). [HSS01],

[RSV02]

Chapter 5 35

Application

Files

a)

Application

RDBMS

DB

b)

Figure 8: Data Storage Architecture a) Proprietary file
systems, b) Relational Database Management Systems
(RDBMS) (after [RSV02])

Another option for data storage and management could be the use of a Relational

Database Management System (RDBMS), as shown in Figure 8b. The advantages

would be a representation of the features by relations and Structured Query

Language (SQL) based querying. But the relational model is not powerful enough

for handling the structural complexities of spatial data. The independence principle

is violated and the performance is poor. [SS98], [RSV02]

Because the data storage architectures mentioned above are unsuitable for GIS

purposes, other approaches have to be considered: The Loosely Coupled Approach

and the use of Extended or Object-Oriented RDBMS [SS98], [RSV02].

36 Server-Side Technology and GIS Functionality

Application

RDBMS
Geom.
Pro-

cessing

FilesDB

a)

DB

b)

Application

Object-Oriented
DBMS

Application

Extended
RDBMS

DB

c)

Figure 9: Alternative Data Storage Architectures a)
Loosely coupled, b) Object-Oriented Database
Management System, c) Extended Relational Database
Management System, (after [RSV02])

In the Loosely Coupled Approach, the management of attribute and spatial data is

separated (Figure 9a). While attribute data can be handled by a RDBMS, spatial

data are handled by a separate subsystem that cares about geometric processing.

This strategy is followed by most of the commercial GIS software packages, but

also suffers from several disadvantages, namely the coexistence of heterogeneous

data models, a partial loss of basic DBMS functionality (recovery, querying, and

optimization) and the need to do the processing in the application layer.

For some years, Object-Oriented DBMS (OODBMS) seemed promising (Figure

9b). In this approach, object classes are defined which are collections of objects of

the same abstract data type (ADT). Following the concept of encapsulation, these

objects can only be accessed through the operators attached to their class. Classes

can inherit their operators (methods) and attributes to subclasses. The object-

oriented model also implies object identity, complex object support and user

defined data types. In the mean time, recent development seems to have directed

Chapter 5 37

the attention towards object-oriented programming languages and Extended

RDBMS. [Gün98], [HSS01]

Extended RDBMS (Figure 9c) unify the modeling concepts of Object-Oriented

DBMS and the advanced technology of RDBMS. This is why they are also called

Object-Relational DBMS (ORDBMS). New types and operations are added to

RDBMS. The extension of SQL enables the manipulation of spatial data and

provides new spatial types (point, line, and region). Besides this, other DBMS

functions are optimized for efficient spatial data handling. [SS98], [HSS01],

[RSV02]

Chapter 6 39

6 Extended Relational Database Management

Systems

This chapter introduces issues relevant to spatial databases. It is of special interest

for this thesis project, because not only attributes, but also the geometries of some

themes shall be stored in a database. Thus, this chapter is important for

understanding how spatial data can be stored in a database and � even more

important � how it can be retrieved efficiently.

The first section explains why RDBMS must be extended for the use in GIS

applications and what the requirements are. In the second section, the

representation of spatial data and the logical models in a spatial database are

examined. It is mainly based on [RSV02]. The third section gives an overview of

access methods. For a better understanding of the spatial access methods, which are

needed in order to find the results of spatial queries efficiently, traditional access

methods are introduced in a first subsection.

6.1 From RDBMS to Extended RDBMS

Relational Database Management Systems are based on a data model that provides

the infrastructure needed for the generation of a computer based model of the real

world. In order to be able to model the relevant part of the real world in a database,

a semantic model is needed. Among the semantic models, the Entity-Relationship-

Model (ER) is the most common in modern RDBMS. It consists of Entities

(different concepts of the world that shall be modeled) and Relationships between

those entities. Attributes are used to characterize the entities and � in some dialects

of the ER model � relationships. Keys are the minimal amount of attributes needed

for an unambiguous characterization of an entity amongst all entities of the same

type. On the conceptual level, the Relational Model is the most commonly used.

Relations are sets of Tuples, which are a collection of (atomic) attribute values.

40 Extended Relational Database Management Systems

They can be represented as Tables, with rows corresponding to data objects of the

real world and with columns stating their attributes. [KE01], [RP02]

In the vocabulary of geospatial modeling, entities are geographic objects (also

called features) which consist of a description and a spatial component. The

description is a set of descriptive (alphanumeric) attributes. The spatial component

itself can contain geometry and topology and does not correspond to any standard

data type available in RDBMS. Therefore, their representation requires powerful

modeling. This is leading to spatial data models, amongst which three basic data

types are used: points (zero-dimensional objects), lines (one-dimensional objects)

and regions (two-dimensional objects). [RSV02]

6.1.1 Requirements of Extended RDBMS

Generally speaking, data input, storage, retrieval, analysis, display and selection

need to be possibly performed on both spatial and attribute data. Therefore, in a

spatial DBMS the representation and manipulation of geometric information with

traditional data should be integrated (at the logical level), and data storage and

processing need to be efficient (at the physical level). The logical data

representation should thus be extended to geometric data.

6.2 Topology, Representation and Logical Models

Collections of spatial objects (isolated spatial components of geographic objects)

can be represented in a database in different ways. In this context, the relationships

among these objects become interesting. The first subsection therefore introduces

the topological relationships among spatial objects. In the second subsection, the

three most commonly used representation models for collections of spatial models

are presented, which mainly differ in the way how topological relationships are

expressed. The third subsection looks at how the representation of geographic

objects can be supported, using Spatial Abstract Data Types to extend the relational

data model.

Chapter 6 41

6.2.1 Topology

Topological relationships between objects are orientation-independent (invariant

under topological transformations like translation, rotation or scaling in the

Euclidean plane) [RSV02]. They differ in terminology, but generally include

equivalence, partial equivalence, containment, adjacency and separateness [Jon97].

In [Ege96], eight relations between two regions in IR2 have been identified (Figure

10):

A

B

A

B

A=B
A

B

A

B

B

A

B

A

BA

disjoint meet overlap contains

covers inside covered by equal

Figure 10: Topological Relations between two Regions
(after [Ege96])

6.2.2 Geometric Representation of Spatial Objects

As already mentioned, there are three spatial data models (Figure 11) for

representing the geometry of spatial objects, but also of the topological

relationships among the objects included in such a collection.

42 Extended Relational Database Management Systems

Geographic Data Model

Spatial Data Model

TopologicalNetworkSpaghetti

Figure 11: Spatial Data Models

Spaghetti Model

This Model describes the geometry of every object independently, without storing

any topological information. Its simplicity, the easy input of new objects and the

possibility to represent heterogeneous data types are important advantages. But

there are also main disadvantages like the lack of topological information which

therefore has to be computed on demand. And due to the independent

representation of each object, redundancy is implied. This means that for example

common boundaries of polygons are stored twice, which can decrease the

performance of queries in large databases or lead to inconsistency. Figure 12a

shows the example of two polygons (P) represented in the Spaghetti Model. They

can be described by an ordered list of coordinate pairs, such as:

• P1: < [1, 4], [2, 2], [4, 1], [3, 6] >

• P2: < [4, 1], [6, 3], [5, 5], [3, 6] >

The Spaghetti Model is implemented in the Simple Features Specification of the

OGC.

Chapter 6 43

Network Model

Network representation is more complicated and additionally requires the concepts

of nodes (points connecting arcs) and arcs (polylines starting and ending at a node).

So the relevant data types are regular points, nodes, arcs, polygons and regions. In

planar networks, all intersections of edges are nodes; while in nonplanar networks,

intersections are not necessarily created with every crossing. Nodes are stored with

their coordinates and a list of arcs they connect, arcs with their starting and ending

node and a list of regular points they include. This model provides a description of

networked topology, enabling optimal-path searches and connectivity tests.

Topological information about polygons (closed polylines) and regions (sets of

polygons) is missing. Figure 12b illustrates the representation of nodes (n) and arcs

(a) in the Network Model:

• n1: [[2,2], < a1, a2, a3 >]

• a3: [n1, n3 < [1,4] >]

Topological Model

This approach is similar to the network model and featuring the same types, but is

always describing a planar network. There exist adjacent polygons, since arcs also

include the two polygons sharing it as a common boundary. Because polygons are

represented by a list of arcs, and arcs are including information about the polygons

they belong to, a certain redundancy is implied. However, the geometry of the

objects is stored only once. This concept of sharing objects solves the problem of

possible inconsistency, making maintenance and updates easier. The computation

of topological queries is more efficient. However, some operations like line

scanning are much slower than in the spaghetti model because of the complexity of

the structure. And pre-computation of a part of the planar graph is necessary for the

insertion of new objects. Figure 12c presents the representation of polygons and

arcs in the Topological Model:

44 Extended Relational Database Management Systems

• P1: [< a, b, c, g >]

• g: [n1, n2, P1, P2, < >]

b)

P1

P2

n1

n2

n3

a1

a2

a3

a4

a5

a6

a7

n4

a)

P1

P2

(1,4)

(2,2)

(4,1)

(6,3)

(5,5)

(3,6)

c)

P1

P2

a

b

c
d

e

f
g

n2

n1

Figure 12: Geometric Representation a) Spaghetti Model,
b) Network Model, c) Topological Model

The main difference between the Spaghetti Model and the other two is that the

former is missing the storage of topological information basing on the identity of

parts of objects (e.g., arcs or nodes), while the latter two do not. However, because

of the storage of the coordinates of each point, topology is included also in the

Spaghetti Model, but just implicitly.

6.2.3 Spatial Abstract Data Types

As already mentioned, new spatial data types are required for a representation of

geometric objects. But not only their structure, also the operations performed on

those types need to be defined. This is called the concept of Abstract Data Types

(ADT). ADT are encapsulated, i.e. they are only accessible through the operations

defined on them. More exactly, on objects of a certain type, a set of operations is

defined. These operations are serving as an interface towards the user, to whom the

structure of the data type is hidden. Therefore, a query language can be extended

with geometric functionality, independently of a specific representation or

implementation.

Chapter 6 45

regionfloat stringGeographic Data Model

Spatial Data Model

Data Structures

Operations

+

P : < [1, 0], [3, 1], [5, 0], [7, 2], [2, 4], [0, 2] >

Figure 13: Spatial and Geographic Data Model (after
[RSV02])

The concept of ADT is related to the one separating spatial objects from geometric

objects, as already mentioned earlier. As can be seen in Figure 13, a lower level is

built by the spatial data model, providing data structures and operations on them.

At an upper level, the geographic data model takes place. Here, the new types such

as region, line or point appear next to all other traditional types like float or string.

A geographic object can now be described with values of the system-own types,

extended with spatial data types. Any spatial data model described in the previous

section may be used to actually store the spatial objects, as long as they provide the

same operations.

The implementation of the spatial operations depends on the representation of the

spatial objects. It must also be kept in mind that the result of every operation must

be either an atomic type of the DBMS (e.g. real or integer), or one of the abstract

types. This means that, for instance, a result of a query can not contain points, lines

and polygons, if they can not be represented within one type. The reason for this is

the functional view of queries as a composition of operations. Another thing to

46 Extended Relational Database Management Systems

think of is the semantics of operations. Depending on the dimension, an operation

can have different meanings. For example, the intersection of two lines can result in

a segment (or a set of segments) the lines have in common, or it can be the set of

points of intersection.

6.3 Data Access Methods

Extended RDBMS do not only need new data types and operations. In order to

process spatial data efficiently, also new Spatial Access Methods (SAM) are

required. While RDBMS use classical indexes for the retrieval of alphanumeric

data, Extended RDBMS provide different access methods for spatial data, in which

objects are selected location-based or phenomenon-based (or both in combination)

[Jon97]. In the following, the first subsection introduces traditional data access

methods. Its purpose is to provide the theoretical basics for a better understanding

of the second subsection, where some of the numerous kinds of SAM are described.

6.3.1 Traditional Access Methods

The simplest traditional method to access an entry in a file would be the sequential

access, in which every record in a file is read until the one of interest is found. This

method may have a poor performance, since if, in the worst case, the record of

interest is the last entry, all previous entries have to be accessed first. More direct

access can be reached if either the address (an associated serial number) of the

record is known or if a constituent key field has been defined, whose content

enables the DBMS to find the according record directly. The primary key is the

field which is used the most for identifying a record, but also secondary keys can be

used. Of course, the values of these key fields must be unique. The access methods

most commonly used in RDBMS are listed in this subsection, based on [Jon97].

The examples deal with a list of names that has been chosen for illustration.

Binary search

The records within a file are sorted according to the contents of the primary key

field. Given a value to search for (search key), this method starts with the record

Chapter 6 47

placed in the middle of the file and compares the two keys (Figure 14, step 1). If the

values are not equal, the method jumps to the middle record of the upper or lower

half part of records (step 2), depending on whether the search key is bigger or

smaller than the primary key value just checked. Like this, the amount of records to

search is always halved until the record of interest is finally found (step 3).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

1)

2)

3)

Axenia
Brigitte

Carolina
Christian
Claudia
Daniel
Debbie
Frank
Iris

Margrit

Regula

Roland

Yvonne

Sam

Oliver

Mark

Thomas

Figure 14: Binary Search Method

Hash addressing

Hashing algorithms are used to transform key field values into record numbers.

This is done for all records and results in the records being allocated to a unique

record number. If searching for a specific record, the search key value is

transformed into the record number where the data are stored, and the record can be

accessed directly by its address.

Indexing

Another method is the introduction of an index, ordered by the values of the key

field. In dense indexes (Figure 15), there is an entry consisting of the key field and

the record number of the corresponding record in the main file, which is also sorted

by the values of the primary key. The record number is also called a pointer,

because it points to the record in the main file. Indexes are smaller than the main

files and can therefore be read much faster. But in large files this can still take too

48 Extended Relational Database Management Systems

long, which is why sparse indexes only register a part of the key fields (Figure 16).

This requires a sequential reading of the index until a key field value is found,

which is greater than or equal to the one of interest. Like this, direct access is

provided to the address of a record within the main file, from which a short

sequential search has to be done until the target is found.

Axenia
Brigitte

Carolina
Christian
Claudia
Daniel
Debbie
Frank

Name Street Place
Rec.
No.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Axenia
Brigitte

Carolina
Christian
Claudia
Daniel
Debbie
Frank

Key Field Pointer

Figure 15: Indexing with a Dense Index (after [Jon97])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Axenia
Brigitte

Carolina
Christian
Claudia
Daniel
Debbie
Frank
Iris

Margrit

Regula

Roland

Yvonne

Sam

Oliver

Mark

Thomas

Name Street Place
Rec.
No.

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

1
6

10
14

Claudia
Iris

Regula
Yvonne

Key Field Pointer

Figure 16: Indexing with a Sparse Index (after [Jon97])

If a sparse index becomes too long, a new index can be laid on top of the first

index, leading to a hierarchical structure. It is also possible to have more than one

index on the same file, with a primary index being based on the primary key, and a

secondary index on a secondary key field. If some records share a common

Chapter 6 49

property in the secondary key field, it is furthermore possible to index just one

record per property, if there is a pointer in the main file addressing the next record

with the same property. The records chained together are called linked lists and are

also used to access records in a specific order. This approach enables easy updates

of records, which are inserted at the correct logical place, without having to be

stored physically near their logical neighbors. Thus, this method is also used to

chain records ordered by the primary key.

Trees

Also with linked lists, it can possibly take a long time to read through all records

sharing a common property, if there is a large amount of data to handle. For this

reason, tree structures have been introduced to provide an alternative way,

depending on the object of the search. In a binary tree, each record contains �

besides data in a key field � two pointers to other records whose items are

respectively higher and lower to the sequence (Figure 17).

Axenia Debbie Iris Sam

Frank

Claudia Mark

Figure 17: Binary tree (after [Jon97])

Starting at the root record, the search is descending along the tree structure, turning

left or right at each record (also called a node), until the record of interest is

reached. The fact that the number of records to read is proportional to the logarithm

to the base 2 of the total number or records makes this method very useful. In order

to create complete database index mechanisms with nodes storing key fields and

pointers to records of corresponding database files, the concept has been extended.

The resulting B-tree is the classic structure for indexing in RDBMS. Its nodes can

contain a variable number of pointers, which makes the tree balanced. This means

50 Extended Relational Database Management Systems

that the height of the tree (number of levels) stays the same for all leaf nodes when

inserting or deleting data, hence the tree structure is adaptable. The height of a tree

affects the number of pointers that need to be followed and is thus the main factor

influencing performance.

There exist several variations of the B-tree. The B*-tree, for instance, is a broader

tree that reaches a smaller height due to increased branching [HR01]. Another

example is the B+-tree, in which the nodes contain only separators, while the leaves

store all keys and are sequentially chained [ES00].

6.3.2 Spatial Access Methods

B-trees and hashing are designed for alphanumeric data without spatial properties.

Thus new access methods have to be designed that use spatial properties for

accessing spatial data efficiently [AG97]. While B-tree properties rely on a total

order of key values, geometric objects are better ordered preserving object

proximity, i.e. objects close in the 2D plane should be close in the index [RSV02].

There exist countless methods and algorithms for spatial data access, and authors

classify them according to different criteria. Some of the most important SAM have

their origin in one of the traditional indexing methods [AG97] discussed in the

previous section. However, two basic approaches can be identified in spatial

indexing [Jon97], [RSV02]. The first of them is based on regular partitioning of the

data space, more or less independently of the distribution of the objects in the 2D

plane. This may lead to a subdivision of an object�s geometry into several cells.

Examples of access methods following this approach are Grids, Quadtrees and

Grid Files. On the opposite, the second approach adapts to the distribution of the

objects in space and uses different strategies. The concept of divide and conquer is

used to subdivide the space into half-spaces by selecting point or linear objects, as

for example in the k-d-tree, a multidimensional binary-search tree [Jon97], [AG97].

Another strategy is the use of minimum bounding boxes (MBB) stored in nodes of a

search tree, such as the R-tree and its variants.

Chapter 6 51

Grids

A two-dimensional regular grid structure (fixed grid, Figure 18) is dividing the

space into cells (buckets), representing a block of secondary storage where all

objects laying in the same cell are stored [AG97]. This method is only efficient for

uniformly distributed point data, since many points in a few cells might overflow

the capacity of a storing page [RSV02]. Grid files have been developed allowing a

dynamic structure by splitting the cells according to the density of objects [HR01].

[a,b] [k,l,m]

a

b

k

l

m

...

Figure 18: Fixed Grid (after [RSV02])

Quadtrees

In quadtrees, the space is divided into quadrants, which can be subdivided

recursively until a condition of data storage is met. This results in storage overhead

due to the big number of pointers, which is why linear quadtrees use listed records

of the node data to become better suited to database storage schemes. Figure 19

shows an example with a maximum capacity of four points per cell. Many different

space filling curves have been proposed to define an order to the cell labeling,

which partially preserves proximity (neighbor cells are labeled with similar

numbers and stored close together). The cells of a linear quadtree can be indexed

52 Extended Relational Database Management Systems

with a B-tree using their order as a key, providing a good performance especially in

point queries. [Jon97], [RSV02]

c
b g

d
a,b
e,f
c
j,k,l,m
h,i

100
210

220
230
240
300
400

Quadtree
address

Geom.
ID

a

d

g

j

l

k

h

i

m

e

f

100

210

220

230

240

300

400

210
[d]

220
[a,b]

230
[e,f]

240
[c]

100 300 400

Figure 19: Spatial indexing with a Linear Quadtree (after
[RSV02], [Jon97])

R-trees

This method was introduced in order to provide a dynamic index structure for

objects in a multidimensional space. The tree is height-balanced and similar to a B-

tree, with nodes containing the tuple-identifier of an object and its minimum

bounding box. Non-leaf nodes contain a pointer to a lower level node and the MBB

of all boxes stored in it. A search of the tree begins at its root and checks for

overlapping of the search area with the MBB in each node, until in an end-leaf a

record qualifies. Because of the hierarchical structure of MBB containing lower

level MBB (and being contained by higher level MBB), several branches may have

to be searched. In difference to previously discussed methods such as the quadtree,

there exists an adaptation to skew data distribution. The tree remains balanced,

since new entries are inserted into the leaves and overflowing nodes are split, which

propagates up the tree. [Gut84], [RSV02]

Chapter 6 53

One issue occurring with R-trees is that the boxes containing the objects may not be

optimal, causing too much coverage, which is defined as the total area of all MBB

of all leaf tree nodes. In addition, the effect of overlapping refers to the total space

being contained within several leaf MBB. Given the assumption that most spatial

databases are rather static, this problem can be addressed by packing R-trees, i.e.

pre-organizing the objects and MBB before creating the R-tree index. The objects

are grouped with the nearest-neighbor method and the leaf MBB are treated as

objects themselves; that way, the algorithm works from bottom to top, creating the

root at the end. Later inserts or deletions of objects can still be done. [RL85]

Another approach to avoid overlapping is followed when using R+-trees. With the

clipping technique, newly inserted rectangle objects are split and stored in several

leaves. This leads to object duplication, increasing the tree size. But for point object

data, a straight path down the tree is followed, and fewer nodes have to be visited,

which increases performance. [RSV02]

Generalized Search Trees (GiST)

In order to extend search trees for maximum flexibility towards all kinds of new

applications, development was concentrated on two main research approaches: 1)

New data structures (specialized search trees) have been developed for specific

problems (queries), for example the R-tree. 2.) Existing search trees have been

extended, so that they support new data types. But regardless of the data type, B+-

trees only support queries containing linear range predicates (=, <, >) and,

similarly, R-trees only support queries containing n-dimensional predicates

(equality, containment, overlap). Hence a third possibility has been presented,

which unifies some of the most common search trees (such as the B+-tree, R-tree,

hb-tree, TV-tree, Ch-tree, partial sum tree and others). The GiST is an object

oriented, flexible structure, allowing new data types to be indexed and new queries

natural to the types to be performed. It is implemented in one single piece of

program code. The keys may be arbitrary, but are in practice coming from a user-

implemented object class that provides a set of methods required by the GiST.

54 Extended Relational Database Management Systems

Those methods are sufficient to extend the GiST structure towards a specific SAM,

allowing it to be used e.g. as an R-tree. This ability makes the GiST not only

extremely extensible, but also a good tool to perform analyses, comparisons and

optimizations of search trees. [HNP95], [HR01]

Chapter 7 55

PART III: WEBGIS PROTOTYPE

7 Methods

This chapter describes the WebGIS SNP prototype that has been implemented in the

practical part of this thesis. The first section specifies the requirements for the

prototype application. A short description of the data is given in the second section.

In the third section, the software components of the system are described in detail.

The fourth section presents an overview over the system architecture of the

prototype, referring to the client- and server-side technologies and data storage

possibilities examined in the previous chapters. It also gives a short introduction

into the basic setup of a MapServer application. The fifth section describes how

important functions of the prototype have been implemented.

7.1 Requirements

Besides the research objectives formulated in section 3.3, the WebGIS prototype

should have the following functionality:

• Basic functionality:

• Zoom in and out, zoom to selected extents

• Pan

• Query (requesting information by clicking on an object in the

map)

• Changeable map size

• Advanced Functionality:

• Attribute queries (querying attributes stored in the database

through a separate user interface)

• Visualization of the attribute query results in the map

• Graphic aggregation of the query results in the map

56 Methods

• Interaction (the user can change parameters and the application reacts

on changes)

• Adaptive user interface (the elements of the user interface adapt to the

actual situation and behave according to the data that are currently

available and the rules that must be respected)

These requirements lead to the consequence that both, the general user interface

and the specialized interface for attribute queries must be programmed as

dynamically as possible. Furthermore, the following use case shall be realized: A

user should be able to perform attribute queries on several layers, enabling him to

explore the underlying data stored in a database. This shall result in a list of query

results on one hand, and in a visualization of the query results in the map on the

other hand.

7.2 Data

The detailed description of the GIS data that have been used is listed in the

Appendix. Generally said, the data are either raster or vector data; the former are

geo-referenced raster images, and the latter originate from ESRI Arc/INFO vector

data sets or Shapefiles. Some of them have been imported into the PostGIS

database with the shp2pgsql tool.

The maximum extent covered by WebGIS SNP is limited by the following

coordinates:

Xmin: 785000 Xmax: 835000 Ymin: 150000 Ymax: 199999

These are values in the Swiss Coordinate System with map units in meters and the

following origin in the city of Berne:

X: 600000 = 7° 26' 22.5" N Y: 200000 = 45° 57' 88.66" E

The fact that all data are in German has heavily influenced the decision to create the

GUI in the same language. This single language strategy was chosen because

Chapter 7 57

German query results would have been intermixed into an English web page

otherwise.

7.3 Software Components of the Prototype

The software components presented in this section form a multi-component

prototype with open interfaces that could also be used for a distributed application

with the components running on different servers, as discussed in chapter 3.

Concerning the hardware, the server that has been used is a Sun Ultra-60 with 2

sparcv9 296 MHz processors and 1024 MB RAM. The operating system is Solaris

7. On this machine, all software components were configured, compiled and

installed as illustrated in Figure 20. It is notable that virtually all software

components in use on the server are distributed under Open Source licenses. They

are discussed in the following subsections.

PHPApache

MapServer
PostgreSQL

PostGIS

Freetype

GD libtiff

Figure 20: Prototype Software Components

58 Methods

7.3.1 Basic Libraries

In order to finally install and run the UMN MapServer, a few basic libraries have to

be installed first. To be more precise, only the GD library is mandatory, but it

requires the zlib and libpng libraries (which are the only parts that had already been

installed on the server by the system administrators). GD also needs to be compiled

against Freetype in order to enable TrueType font support with MapServer. Only

libtiff is optional. All these components are Open Source.

Freetype

Freetype is a font engine, giving access to most important font properties and

TrueType tables. It defines several kinds of structures that are used to manage the

various abstractions that are required to access and display fonts. For more

information, refer to http://www.freetype.org.

zlib

zlib is a general purpose data compression library. Its data format is portable across

platforms. More information can be found at: http://www.gzip.org/zlib/.

libpng

libpng is the official PNG reference library. The PNG (Portable Network Graphics)

file format enables a lossless, portable and well-compressed storage of raster files,

providing a patent-free replacement of GIF. It uses zlib to compress and

decompress PNG files. More information can be found at:

http://www.libpng.org/pub/png/libpng.html.

GD

GD is an ANSI C library for the dynamic creation of images. It creates images of

the type PNG and JPEG, but not GIF (anymore), because of patents issues with the

compression algorithm for this format. More information can be found at:

http://www.boutell.com/gd/.

Chapter 7 59

libtiff

libtiff is a library for reading and writing TIFF (Tag Image File Format) files. More

information can be found at: http://www.libtiff.org.

7.3.2 Apache Web Server

The Apache HTTP server is a well known Web Server that is maintained as an

Open Source project by the Apache Software Foundation. It has been the most

popular web server on the internet since 1996 and runs on UNIX/LINUX and

Windows operating systems (http://httpd.apache.org).

7.3.3 PHP

PHP is an Open Source scripting language and has become very popular for

dynamic web development (http://www.php.net). Since PHP is used on the server-

side (see also chapter 5), it must be installed on the server. This is mostly done by

compiling it into the Apache web server, either statically linked or as a dynamic

module, with the advantage of a certain performance gain. Because of known

current thread-safety issues with the module, the PHP/MapScript module of the

UMN MapServer (see section 7.3.6) can at the moment of writing only be run if

PHP has been installed as a CGI program. This requires additional configuration of

the Apache web server.

7.3.4 PostgreSQL

PostgreSQL is an Extended RDBMS that has its roots in the POSTGRES project

started 1986 at the Computer Science Department of the University of California at

Berkeley. Since 1994, the original query language PostQUEL was replaced with

SQL, and the software was released as an Open Source Project with the name

Postgres95. In 1996, the new name PostgreSQL was chosen, reflecting the

relationship between the original and the newer version with SQL capability.

Features of PostgreSQL are constraints, triggers, rules and transactional integrity. It

is extensible by the incorporation of the additional concepts of inheritance, data

60 Methods

types and functions. The spatial data model in use is the Spaghetti Model. Point,

line, line segment, box, path, polygon and circle are included in the set of available

geometric data types. A region type is missing. To avoid ambiguity when creating

new geometric objects, the �(Representation)�::type notation is used (e.g.,

�((0,0),(1,1))�::box to create a rectangle, �((0,0),(1,1))�::lseg to create a line

segment). A large set of native support functions and operators is implemented, but

not listed here in detail. Four indexing methods are implemented into PostgreSQL:

B-tree, Hash, R-tree and GiST. [RSV02], [PS03b]

In the following subsections, some of the capabilities of PostgreSQL are explained

in more detail, showing the possibilities for a user to extend the system [PS03a].

Functions

Functions in PostgreSQL can most easily be written in SQL (SQL Functions). The

Procedural Language Functions PL/pgSQL, PL/Tcl, PL/Perl and PL/Python are

available by loadable modules, but also user-defined procedural languages can be

developed. Internal Functions are written in the C programming language. They are

predefined and have been statically linked into the PostgreSQL Server. C Language

Functions are written in C and compiled into dynamically loadable objects. Such

shared libraries may be loaded by the server on demand, which is the difference to

internal functions that are statically linked.

Types

Types in PostgreSQL can be Base Types or Composite Types. While the latter are

created with the creation of a table, the former are defined in a programming

language and can be subdivided into built-in types that are compiled into the system

and user-defined types. To define a new type, an input function and an output

function must be written first.

Operators

The query planner can optimize queries that use an Operator. Operators can be

created on top of an underlying function.

Chapter 7 61

Interfacing Extensions to Indexes

After the creation of user-defined functions, types and operators, the system must

be told how to use them with indexes. This has to be done by modifying some of

PostgreSQL�s system catalogs. Access Method Strategies are used to express the

relationships between operators and the way they can be used to scan indexes.

Operator Classes define the input data types for each of the operator classes.

Access Method Support Routines are additional administrative routines internally

used by the access methods.

Index Cost Estimation Functions

In order to optimize queries, the query planer needs a cost estimation function for

every index access method. These functions are written in C and provide the cost of

all disk and CPU costs associated with scanning the index.

7.3.5 PostGIS

PostGIS (http://postgis.refractions.net) is a spatial extension to PostgreSQL,

enabling PostgreSQL to be used as a backend spatial database for GIS. It allows

geographic objects to be stored in the database and includes support for GiST-based

R-tree spatial indexes and functions for basic analysis of GIS objects. PostGIS

follows the OpenGIS Simple Features Specification for SQL and will be submitted

for compliance testing at version 1.0 (current version at the time of writing is

0.7.4). PostGIS is Open Source software and takes advantage of the extensibility of

PostgreSQL (discussed in the previous section).

62 Methods

Geometric Data Types

Table 1 lists the available types provided by PostGIS, as they are specified by the

OGC in [OGC99].

Geometry Type Representation

Point �POINT (10 10)�

LineString �LINESTRING (10 10, 20 20, 30 40)�

Polygon �POLYGON ((10 10, 10 20, 20 20, 20 15, 10
10))�

Multipoint �MULTIPOINT (10 10, 20 20)�

MultiLineString �MULTILINESTRING ((10 10, 20 20), (15 15,
30 ,15))�

MultiPolygon �MULTIPOLYGON (((10 10, 10 20, 20 20, 20
15, 10 10)), ((60 60, 70 70, 80 60, 60 60)))�

GeomCollection �GEOMETRYCOLLECTION (POINT (10 10),
POINT (30 30), LINESTRING (15 15, 20 20))�

Table 1: Geometric Data Types implemented in PostGIS

Operators

PostGIS supports OGC�s features and representations, but currently not the various

comparison and convolution operators. Implemented operators are shown in Table

2, where A and B represent geographic objects.

Operator Description

A &< B A�s mbb overlaps or is to the left of B�s mbb.

A &> B A�s mbb overlaps or is to the right of B�s mbb.

A << B A�s mbb is strictly to the left of B�s mbb.

A >> B A�s mbb is strictly to the right of B�s mbb.

A ~= B A is geometrically equal to B (A and B are the same
feature).

A ~ B A�s mbb is completely contained by B�s mbb.

A && B A�s mbb overlaps B�s mbb.

Table 2: Operators implemented in PostGIS

Chapter 7 63

Functions

Two kinds of functions are implemented, but not listed here in detail: OpenGIS

functions as specified by the OGC [OGC99] and other functions, which are mainly

support functions and not needed by general users.

As PostGIS is still under development (tough rapidly evolving), some limitations

still apply: 1) Topological relationships can at the moment only be tested between

the mbb of two objects. An exception is the ~= operator which compares the actual

geometries. 2) Named spatial relationship predicates for testing spatial relations

between geometric objects are still missing, such as: Relate(), Touches(),

Contains(), Crosses() and Disjoint(). PostGIS at the moment also lacks most spatial

operators that support spatial analysis, like: Buffer(), Intersection(), Union(),

Difference() and SymDifference().

This will change when the currently ongoing integration of GEOS (Geometry

Engine � Open Source) has been completed. GEOS (http://geos.refractions.net) is

porting the Java Topology Suite (JTS) to a C++ library, which will be used to

provide more advanced topology operations to PostGIS. JTS is an Open Source

Java API of 2D spatial predicates and functions and conforms to the Simple

Features Specification for SQL (http://www.vividsolutions.com/jts/jtshome.htm).

7.3.6 UMN MapServer

The �MapServer� (http://mapserver.gis.umn.edu) of the University of Minnesota

(UMN) has been developed in cooperation with NASA and the Minnesota

Department of Natural Resources. It was chosen because of its many advantages:

This Open source product has already been successfully used in several other

projects [VBW+00], [Für01], [Puc01], [SVS+01]. MapServer is developed for

UNIX/LINUX operating systems, but can also be run under Windows. It is not a

full-featured GIS system, but provides core functionality to support a variety of

web mapping applications. Its most important features include:

64 Methods

• Vector formats supported: ESRI shapefiles, simple embedded

features, ESRI ArcSDE (alpha release)

• Raster formats supported (8-bit only): TIFF/GeoTIFF, GIF, PNG,

ERDAS, JPEG and EPPL7

• Quadtree spatial indexing for shapefiles

• Fully customizable, template driven output

• Feature selection by item/value, point, area or another feature

• TrueType font support

• Support for tiled raster and vector data (display only)

• Automatic legend and scale bar building

• Scale dependent feature drawing and application execution

• Thematic map building using logical or regular expression based

classes

• Feature labeling including label collision mediation

• On-the-fly configuration via URLs

• On-the-fly projection

On-the-fly projection is supported through PROJ4, a USGS cartographic projection

library (http://www.remotesensing.org/proj/). Additional vector input is supported

through OGR, a simple features library for the display of various vector data

formats (http://gdal.velocet.ca/projects/opengis/). These features are optional and

must be compiled into the system, as well as support for ArcSDE, Oracle Spatial or

PostgreSQL/PostGIS.

MapServer is also compliant with OGC�s Web Map Service Implementation

Specification 1.1.0. It can be used as a WMS client in order to include map layers

from remote WMS servers into MapServer applications, but can also work as a

WMS compliant server, from which clients can build customized maps.

While the classic MapServer application is a CGI program, the MapServer C API

can also be accessed via MapScript in several popular programming languages such

Chapter 7 65

as Perl, Python, Tk/Tcl and Java. For the WebGIS SNP prototype, the

PHP/MapScript module was used. This module is an Open Source development

that has now become an integral part of the MapServer distribution. It makes

MapServer�s MapScript functions and classes available via PHP

(http://www2.dmsolutions.ca/webtools/php_mapscript/index.html). Furthermore,

the ROSA Java Applet (http://www2.dmsolutions.ca/webtools/rosa/index.html) is

in use, providing additional client-side functionality like dragging images for box

zoom on a map.

7.4 Architectural Overview and Configuration

After the description of data, hardware and software, Figure 21 illustrates an

overview of the system architecture including all major components.

Figure 21: Prototype System Architecture

66 Methods

A request from the client is sent through the HTTP to the Apache web server. The

PHP scripts are parsed and interpreted by the PHP CGI program or Apache module,

and the results are included into the web document. Parameters for attribute queries

are passed to PHP, which is used as an interface to the PostgreSQL database. As the

result of such a query, attribute data are passed back the same way and are

embedded into the HTML code of a web document. If a map request reaches the

web server (simultaneously or independently), it is passed to MapServer�s

PHP/MapScript module, which processes the spatial data (read either from a file or

from the PostgreSQL/PostGIS database) and creates a raster PNG file. The raster

file is also embedded into the HTML code by the Apache web server and is finally

sent back to the client, where it is displayed by the local web browser.

There are two things to note for explanation. First, PHP can be compiled and

installed as both, an Apache module and a CGI program, at the same time.

PHP/MapScript related requests are then (necessarily) processed by the CGI

program, while all common PHP scripts can be handled by the faster module.

However, this only works if they are separated in two different files with different

file name endings, so that Apache can be configured to treat them separately.

Second, the PHP/MapScript module completely replaces the MapServer CGI

program. It is dynamically loaded into a PHP script and provides the same (and

more) functions as if parameters had been sent to the CGI program.

7.4.1 Basic Setup

The basic setup of a MapServer application relies on two major components:

Template File

The Template File controls the display of MapServer output in a web page. More

precisely, the design of the graphical user interface (GUI) and the way how users

can interact with the application are defined here. In the most trivial case, when the

MapServer CGI program is used, the template file is a normal HTML page that can

Chapter 7 67

be designed like any other web page. An example of a simplified HTML Template

File is shown in Figure 22.

Figure 22: Simplified HTML Template File

It contains a form that collects a few parameters like the extent of the map and the

layers to display via hidden input fields. The HTML form itself includes some input

fields of type image that have a parameter name in brackets as their value. This is

the case for the main map, the reference map, the scale bar and the legend. After a

request has been processed and the resulting map has been produced as a raster

image stored on the server, the parameter in the brackets is replaced with its value,

which is the path to the respective file. The client browser then displays the image

normally.

In the more advanced case, if the PHP/MapScript module is used, the Template File

also contains PHP code, recognizable by the surrounding �<?php� and �?>� tags.

An example of a simplified Template File with PHP is shown in Figure 23.

68 Methods

Figure 23: Simplified Template File with PHP Code

The difference in this Template File is that a specific PHP function is called for

every map component. Such a function is responsible for e.g. the creation of the

map and can be defined within the same file, but is more advantageously placed in

a physically different file that is included. This way, the design of the user interface

and the internal functionality is held apart, which makes the maintenance of the

code much easier.

Map File

The Map File can be regarded the configuration file and controls all other aspects a

MapServer application has to deal with: the layers to display, the display

Chapter 7 69

parameters (how shall the layers be displayed) and the query parameters (which

layers can be queried). The example of a simplified Map File in Figure 24 shows

how a couple of general settings like extent, status, and size are defined in the upper

part. In the lower part, a layer with one class is described. Map Files are standard

ASCII text files.

Figure 24: Simplified Map File

If the PHP/MapScript module is used, a big variety of classes, properties and

methods are available, that allow changing or configuring most aspects of an

application on the fly. For example, the status or minimum extent of a layer can be

changed out of a PHP script, but also a whole new layer can be added.

70 Methods

7.4.2 Setup of the Prototype

For the prototype, there exists one main Template File (webgis.phtml). It is

basically a HTML file with JavaScript functions defined in its head. PHP functions

are stored in a plain PHP file (webgis.php), which is included into the Template

File every time the application is loaded and itself includes other PHP files on

demand. For instance, this is the case if the display of the Legend becomes more

complicated because the themes stored in the PostGIS database require specific

treatment (see later explanations). The Map File (webgis.map) includes layers that

are not specified there in detail, but by the functions in the special PHP files just

mentioned.

7.5 Programming

All the functionality of the WebGIS SNP Prototype that can not be regarded as

MapServer�s basic functionality was programmed in PHP. The following

subsections give descriptions on how the problems have been solved, while the

resulting functionality is presented in a later chapter.

7.5.1 Drawing Layers

In order to draw a map correctly, MapServer needs to know which layers are active.

At startup, this is read from the Map File, but the parameters for the layers can be

changed on the fly, e.g. if the user deactivates a layer. Thus, at every reload of the

map, all layers have to be checked for their parameters, which is done by looping

through them. Common layers (from ESRI Shapefiles) do not cause specific

problems; their parameters are read from the HTTP form variables that have been

submitted when the map is reloaded. More challenging is the handling of the

PostGIS layers, where there are two subcategories to handle: The layers that are

loaded from the spatial database when activated, or the layers generated

dynamically as the visualization or aggregation of an attribute query result.

Chapter 7 71

If one of the three PostGIS layers (vegetation, geology, and tectonics) is active, the

extra functionality needed for setting the parameters is delegated to a separate file

(postgislayer.php). The same happens if dynamically generated layers are active

(dynqueryres_layer.php, dynattribute_layer.php). Basically, there are two problems

that need to be solved by such a file: First, a data statement (SQL string) has to be

created and set, for fetching the right geometries from the spatial database for their

visualization in the Main Map later on. Second, several database queries are done

for getting the information needed for later display in the Legend. This requires a

loop through all classes of each layer, where the class names and colors are

received by querying the database and are set at the same time. For dynamic layers,

the procedure is more complicated; much more variables have to be passed and set

together, and the previous settings of the user need to be remembered and

reinserted into the form (context preservation).

7.5.2 Dynamic Legend

Two functions are controlling the behavior of the legend (Figure 25).

Figure 25: Dynamic Legend

72 Methods

One of the functions is shorter and is called only for the background Themes which

� as a constraint � shall never have more than one single class and are not allowed

to be stored in the PostGIS database. The other function is more complicated,

because it handles layers with several classes and from different sources (ESRI

Shapefiles and two kinds of layers stored in the PostGIS database).

Concerning the PostGIS layers, there are two subcategories to handle: The standard

layers that are loaded from the spatial database when activated, or the layers

generated dynamically as the visualization of an attribute query result or its

aggregation. This is explained in more detail in the following.

In a first step, a loop is done through all layers, to check if they are visible at the

current map scale and determine their Visibility and Font Style properties. In a

second step, the function only deals with the layers consisting of one single class

and handles them differently, depending on the properties defined in the first step.

The third step does the same for all layers that have two or more classes. In a fourth

and fifth step, also the two kinds of PostGIS layers are treated.

A separate row in the Legend is created dynamically for each layer. In the first

column, the checkbox needs to be defined, so that the user can activate each layer.

Layers that are already activated must stay in this Status until the user or the

application deactivates them. Activating some layers may result in them covering

others completely. In order to prevent this, the latter layers are deactivated

automatically: If the event of a click on the checkbox happens, a dynamically

created JavaScript call is done for one of the several functions that deactivate the

respectively other layers concerned. An icon is drawn in the second column, if the

layer has only one class and is visible. In the third column, the layer name is

specified and surrounded by the font tags determined earlier. Then, in the fourth

column, a hyperlink is created individually, which enables to open the Information

and Query Page when the user clicks on the question mark icon next to the

respective layer name. It is populated with the following parameters: Layer name,

layer type (point, line, polygon, raster, annotation or query), connection type

Chapter 7 73

(specifies the data source), table (name of the attribute table for later database

queries) and SID (PHP Session ID, needs to be passed for keeping track of the

user�s settings in the application).

The reason for the transmission of these variables is the dynamic nature of the

Information and Query Page, where they are either displayed or needed for

querying the database. Or, in the case of the Session ID, some settings like the map

size and the active layers must be remembered for a later visualization of the query

results (context preservation).

For layers with several classes, the function basically does the same as described

above for one class, but leaves the column with the icon empty. Then, each class is

looped, and a legend icon is created for it. All the classes are listed in additional

rows below the layer�s name, as long as the layer is active and visible.

Layers resulting from a Dynamic Attribute Query (Figure 25 shows a screenshot of

the Legend when the result of a query on the tectonics theme is visualized) are

treated separately, because many additional parameters need to be remembered for

further redrawing of the layer. The reason for this is that Dynamic Layers are

defined by an SQL string acting as input data source, which requires them to be

filled in hidden form variables dynamically for recreating the SQL string after

submitting the form (e.g., clicking on the map).

Since the database is queried several times, the dynamic creation of the legend and

the visualization of attribute query results are slow in performance.

7.5.3 Information and Query page

The Information and Query Page opens in a separate browser window and consists

of frames that display hyperlinks and information. As it has been mentioned in the

previous section, it gets parameters originating from the Dynamic Legend.

Depending on the chosen layer, it can act differently, offering just basic

information about how to use the application and links to the metadata page of the

Swiss National Park, or enabling a Dynamic Attribute Query.

74 Methods

The Dynamic Attribute Query Page consists of a form that offers the user to choose

one of the supplied possibilities at a time (for illustration, see the Example Use

Case described later). That way, a new variable is generated and the HTML form is

submitted immediately by a JavaScript function. The submission causes a query in

the database that looks for the new available possibilities for selection by the user

dynamically. The page then reloads and displays the enlarged form with new

possibilities to select. The user is guided step by step through the query process. At

the end, all variables are chained together and form a SQL string that is used to

perform the query the user wants to do. For the visualization or graphic aggregation

of the query results all the parameters plus the session ID are passed back to the

main application in the original browser window, which closes the circle.

Chapter 8 75

8 The WebGIS SNP Prototype

The application as it presents itself in the browser at first access of the web page is

shown in Figure 26.

Figure 26: The WebGIS Prototype Application (Data ©
GIS-SNP)

76 The WebGIS Prototype

8.1 Basic Functions, Tools and Elements

This section describes what can be called the basic functionality of the UMN

MapServer, except the ROSA Java Applet which is provided by DMSolutions.

However, as it has been described earlier, each of these and all other elements of

the map has specifically to be enabled by designing the user interface in the

Template File and configuring the behavior of the map and its layers in the Map

File.

Two modes are implemented, which influence the look of the user interface and are

called �Java Mode off� and �Java Mode on�. An icon informs the user about the

mode that is active, and a click on it switches to the respectively other mode (Table

3). Figure 27 illustrates the different look of the Main Map with Java Mode on.

Java Mode off

If the icon in the Menu is red, Java Mode is off.

Java Mode on

If the icon in the Menu is green, Java Mode is on.

Table 3: Java Modes

Figure 27: Main Map in Java Mode (Data © GIS-SNP)

Chapter 8 77

Java Mode off is the default, because otherwise, users having a browser without

Java virtual machine would just see an empty map the first time they load the web

page. The icons for the Navigation Functions and Tools are then displayed in the

Menu, where radio buttons can be clicked for selecting them. With Java Mode on,

the ROSA Java Applet is used to display the map. It enables placing the icons as

buttons inside of the Main Map and allows extended image functionality such as

drawing a rectangle over the map. Furthermore, one more function is available:

Area Query. Table 4 lists the Navigation Functions. Table 5 lists other Tools.

Zoom in

A mouse click on the map will zoom in with factor 2 and
recenter the map at this point. If Java Mode is on, a rectangle
can be drawn with pressed mouse button. This results in a zoom
to the marked extent.

Zoom out

A mouse click on the map will zoom out with factor 2 and
recenter the map at this point, unless a part of the map extent is
outside of the extent defined for this application.

Pan

A mouse click on the map will recenter the map around this
point, unless a part of the map extent is outside of the extent
defined for this application.

Table 4: Navigation Functions

Point Query

A mouse click on an object in the map queries the respective
dataset. The Information Table below the Main Map is then
filled with information about that object, which is also
highlighted in the map with red color. If more than one
queryable layer is displayed, information is given for all objects
located at this point.

Area Query

If Java Mode is on, it is possible to query several objects in a
rectangle area. All available information about them is listed in
the Information Table.

Table 5: Tools

8.1.1 Main Map

The activated and visible Themes are displayed in the Main Map. It is created by

MapServer as a raster image in PNG format. Since it is an interactive map, every

click on it causes parameters being sent to the server and a reloading of the map. Its

78 The WebGIS Prototype

size can be changed in a pull down menu (�Kartengrösse�) and varies from

400*400 to 800*800 pixels. Since the size of the Main Map influences the position

of the Menu and Reference Map, the application starts up with the smallest size,

allowing the user to customize the application depending on his screen size at any

time.

8.1.2 Reference Map

The Reference Map is a minimized version of the Main Map and gives an overview

about the extent currently displayed there. A white rectangle marks this extent and

enables an easier orientation of the user. If, after zooming in to a large scale, the

rectangle would only be a point, its look changes into a cross. With Java Mode off,

it is also possible to use the Zoom and Pan Functions in the Reference Map for

quick navigation.

8.1.3 Graphic Scale

The graphic scale (scale bar) is located under the Main Map and is also an image in

PNG format. It is rendered by the MapServer application at the same time as the

Main Map, and the distances in the two images can therefore be compared.

8.2 Implemented Functions and Tools

The functionality described in this section has been implemented in order to extend

the basis MapServer functionality.

8.2.1 Dynamic Legend

While legends provided by MapServer are just raster images with the activated

layers, and standard legends mostly just consist of checkboxes for switching layers

on or off, the legend presented here is a new development and completely dynamic.

Number and properties of the layers are not hardcoded, but automatically detected

on startup and every time the map is redrawn: All layers are checked individually

for their Status, Visibility, Font Style, Query ability and input data type

Chapter 8 79

(raster/vector). For layers with several classes, the respective class names and

symbol color is detected as well.

The multifunctional legend thus enables the user not only to change the status of

the map layers (by activating or deactivating its checkbox), but also to check the

meaning of a symbol or whether a layer is visible at the current scale or not.

Furthermore, the legend offers the possibility to get more information about the

layer or to do an advanced query by opening the Information and Query Page.

Table 6 lists all functionality appearing in the legend.

Status A hook (or cross, depending on the browser) in the checkbox
means that the Status of a layer is �on�.

Visibility The symbol for layers consisting of only one class is displayed
in one row with the layer�s checkbox and name. If a layer has
several classes, they are displayed and labeled separately in
additional rows.

Name The name of a Theme is displayed either in normal or italic font
style, depending on its Visibility.

Redraw Map After the user has selected or deselected a Theme, a click on this
icon causes the map to be redrawn.

Information/

Attribute

Query

Clicking on this icon opens the Information Page in a separate
browser window. Dependent on the layer, an attribute query on
the layer�s attributes and visualization of the query results can
be done.

Quick View Several areas of interest are listed in this pull down menu.
Selecting one of them reloads the map, zooming in or out to the
respective extent.

Table 6: Legend Functions

8.2.2 Information and Query Page

The Information and Query Page opens in a new browser window and can be

reached via a hyperlink at the bottom of the main application page or by clicking on

one of the legend�s question mark icons next to a layer name. Depending on the

layer, it looks a little different. There are two possibilities: For standard layers,

information and helping explanations about the functionality are offered, as well as

additional information such as hyperlinks to the metadata page of the Swiss

80 The WebGIS Prototype

National Park or to the web pages of the prototype software components. For

PostGIS layers, the advanced query possibilities are explained, which provide two

special functions:

�Attribut-Tabelle�: Lists the Attribute Table for the layer that has been

specified by clicking on the respective question mark icon in the Legend.

This table is the result of a pre-defined database query and gives the

advanced user an overview over the attributes available for a theme (Figure

28). It can also be created in a new browser window.

�Datenbank-Abfrage�: The Dynamic Attribute Query is the most complicated

function in the WebGIS SNP prototype and allows the advanced user to

query the Vegetation, Geology and Tectonics Themes. No user needs

specific knowledge about databases or SQL; the selection of the variables

happens intuitively. The results of such a query can also be visualized or

graphically aggregated. A detailed example is illustrated in the Example

Use Case section.

Figure 28: Information Page (Data © GIS-SNP)

Chapter 8 81

8.3 Example Use Case

This section is dedicated to a comprehensive example of the implemented

functionality. The use case that has been defined previously is followed step by

step: Figure 29, Figure 30 and Figure 31 show the sequence of selections that allow

the user to select a theme and an attribute. A simple SQL string is produced and the

user can decide which action to perform next: Submitting the Query or refine it

with a Subquery.

Figure 29: Dynamic Attribute Query (1): Selection of the
Theme

Figure 30: Dynamic Attribute Query (2): Selection of the
Attribute

Figure 31: Dynamic Attribute Query (3): Produced SQL
String

82 The WebGIS Prototype

The results of a Query are listed in a dynamically created table in a separate

browser window (Figure 32).

Figure 32: Dynamic Attribute Query (4): Table with
Query Results (Data © GIS-SNP)

They can be either visualized with the classes listed in the table, or a graphic

Aggregation of those classes could be done. While the latter will be illustrated later,

the former case is presented in (Figure 33). The browser window containing the

main application jumps on the top of all other windows and the page reloads. The

classes are visualized in the Main Map and a new entry in the Legend has been

created.

Chapter 8 83

Figure 33: Dynamic Attribute Query (5): Visualization of
Query Results (Data © GIS-SNP)

If the Subquery button in Figure 31 is pressed, the HTML form is enlarged and the

user gets the possibility to choose a second attribute. After having done so, an

Operator and a Value must be selected. If the Values were of numeric character,

84 The WebGIS Prototype

more Operators would be provided (such as <, <=, > and >=). As can be seen in

Figure 34, the former SQL string has been extended with a subselect statement. At

this point, a second Subquery could be done for further refinement, or the actual

SQL string can be submitted.

Figure 34: Dynamic Attribute Query (6): Refined SQL
String

In this case, the number of results is reduced significantly to four classes. Again,

the results can be visualized with all classes displayed separately (Figure 35), or

graphically aggregated (Figure 36). In both cases, the map is zoomed to the

respective extent, with a buffer of 10%. The Aggregation of the Query results is

only of graphical nature, since in this application neither attribute nor geometric

data are changed like it is possible in a GIS application.

Chapter 8 85

Figure 35: Dynamic Attribute Query (7): Visualization of
Subquery Results (Data © GIS-SNP)

Figure 36: Dynamic Attribute Query (8): Aggregation of
Subquery Results (Data © GIS-SNP)

86 The WebGIS Prototype

8.4 Use and Role of Classic Map Elements in Web Maps

The Questions identified as research challenge in modern Web Cartography are:

How are classic map elements used in interactive, static, on demand Web Maps?

And what is their role in those Web Maps?

8.4.1 The Legend and the Concept of Status and Visibility

In paper maps, the legend serves as a key, explaining the meaning of the symbols

that occur in the map. This is the classic legend function, which is also needed in

interactive Web Maps. But, in difference to traditional paper maps, interactive Web

Maps use the technique of thematic layers that can be activated of deactivated by

the user. Creating a new map element for layer control is in most cases unsuitable,

because it occupies space on the website (which is always rare) and forces the

user�s attention to be laid on one more tool. In practice, most interactive Web Maps

use the legend for layer control, as it is familiar from the user interface of Desktop

GIS programs like ESRI�s ArcView. This leads to a dual functionality of the legend

� classic function and layer controlling function � that has up to now not been

reflected in the design of the legend. In order to do so, the concept of Status and

Visibility has been developed.

Status and Visibility

It is proposed to distinguish between the Status and the Visibility of a map layer. If

a layer�s Status is �on�, this means that it is generally activated and can be

visualized, but it does not necessarily mean that it is visible, too. The reason is that

some layers have a minimum and/or maximum scale, because their occurrence in

the map only makes sense at certain scales. If the actual map scale is outside of the

respective layer�s minimum or maximum scale, these layers will not be displayed.

Therefore, the same behavior has to be chosen for the legend symbols, since it is

not appropriate to display them if they do not appear in the map. The legend thus

can not remain static but must dynamically be recreated with every map redraw.

Chapter 8 87

Font Style

The font style in use for the display of the layers� names has a supportive function

to the above concept. Layers that are not visible in the current map do not have an

icon and are labeled in italic instead of normal font. This lets the user intuitively

estimate if the activation of a layer at the present scale would make sense, i.e. if it

would be visible if its Status would be switched to �on�. It also tells the user why

an already activated layer is not visible at the moment (e.g., after zooming in) and

thus supports the appearance/disappearance of the symbols visually.

Raster Layer Icons

In order to be consequent, also raster layers (input data in raster format, e.g. TIFF)

do have an icon to show their visibility in the actual map. The icon is the same for

all raster layers and has been created from a minimized area of a raster map. It is

clear that the colors in this icon do not have any cartographic meaning; the icon

does not represent a cartographic symbol. But it shows the user that a raster layer is

visible and makes the legend consequently following the same rules for all layers.

8.4.2 Numeric and Graphic Scale

The numeric scale represents the relation of a distance in a map and the respective

distance in nature [HGM02]. This works well for traditional paper maps, but

becomes problematic with maps that are displayed on a computer screen. The

distance on the map then is dependent on the hardware of the user, since all screens

have different resolutions. It is at the moment not possible to detect the users screen

resolution via scripting languages, so an estimated constant value of 72dpi is used

by MapServer. The result of a scale calculation then looks very precise, with

several floating numbers after the comma. In fact, this scale is only correct for

screens with exactly the estimated resolution. Ironically, the numeric scale is

therefore in most cases less precise than the graphic scale (scale bar). It is therefore

not recommended to use the numeric scale in web maps. The same aspects are to

keep in mind with distance measuring, since from the distance on the screen a

88 The WebGIS Prototype

calculation of the distance in nature is made. Although they would be easy to

implement, no numeric scale and no tool for distance measurement are offered in

this application.

8.4.3 Other Elements

Other additional elements that are important for traditional paper maps are mostly

missing in Web Maps. This mainly concerns elements that are located in the

margin, like north arrows, the title, the border itself, the author/editor and the

production date. The title is mostly missing inside of the website, but it can be

located in the top of the border of the browser�s window. The author/editor and the

production date have lost their importance. The owner of the website is responsible

for its content and mostly holds the copyright. The author has become the

developer of the application. The user creates his own map from the data that are

available, at the time he chooses.

8.5 Discussion and Evaluation

The WebGIS SNP prototype shows that it is possible to set up a working

interoperable multi-component application consisting of Open Source software

products. However, besides all advantages of Open Source software, also a few

drawbacks have been experienced during this project. Since all components are

individual software that is developed by different groups of the Open Source

community, a new release of one component featuring additional desired

functionality may result in a cascade of updating other components. The fact that

they must be configured, compiled and installed individually makes the

maintenance of such systems a time consuming process.

The requirements specified for the prototype could all be fulfilled. However,

interactivity is a controversially disputed term among web cartographers. The basic

functionality of zooming, panning and querying was easy to implement. The

objective of an intuitive interface was reached by trying to keep it as �logic� as

possible. Its use should be especially easy for users who are familiar with other

Chapter 8 89

Web Maps. In one thing it differs strongly from other Web Maps and desktop GIS

or drawing programs: Respecting the concept of Status and Visibility that has been

proposed in this thesis, the legend has a dual functionality. For this reason, the

interface might in this point appear non-intuitive on a first look. But this is

overweight by the benefits of the concept, which are a better overview of the layers

that are displayed at the moment and of the ones that could be visualized at the

current scale. The interface for attribute queries can be considered to be most

intuitive, since the user can graphically do his choice and so step by step collects

the variables for a final SQL query string. He thus doesn�t need any experience

with SQL or databases in order to get the results he is interested in. Also the

visualization of the query results can be reached with one single click.

However, both, the separate user interface for attribute queries and the dynamic

legend have the drawback that several database queries have to be performed in

order to either get the final query results or to get the layers� names, classes and

icons. Not to forget that additionally, also the geometries have to be extracted from

the database and drawn in the map. While the PostgreSQL/PostGIS database seems

to perform well, PHP as a CGI program is the bottleneck. Persistent connections to

the database would be desirable. Besides, the machine where all software

components have been installed is neither configured as a GIS applications server

nor as a database server; it is intensively used for general purposes by the staff of

the department. Thus, only selected layers of the Web Map have been stored in the

database completely (i.e., geometries and attributes) and made available for

attribute queries. Nevertheless, it could be shown exemplarily that it is possible to

store entire layers in a spatial database, which is an important step towards

becoming independent from proprietary file formats.

As a last point, the adaptive user interface has to be mentioned. It can generally be

said that the more dynamically an application is programmed, the better. This

enables the application to be maintained by a webmaster, without needing the

knowledge of a developer for e.g. every new layer that should be added. On the

90 The WebGIS Prototype

other hand, the behavior of the interface can only be controlled by general rules,

and the actual manifestation of it may look sub-optimal (e.g., see Figure 33, where

the legend becomes very long because of the big number of classes resulting from

an attribute query). The problem is the same as for the map itself: the developer sets

up rules and provides the data � the map is then produced on demand upon the

user�s request, without any possibility to ensure its cartographic correctness.

Chapter 9 91

9 Conclusions

9.1 Achievements

The main goal of this thesis was the implementation of a working prototype that is

located in the interactive, static, on demand corner of the Cube of Web Map Types,

a model that has been introduced for the approach of this thesis. The visualization

of GIS data of the Swiss National Park with this application could be reached with

the WebGIS SNP prototype, basing on MapServer and PostgreSQL/PostGIS. It

consists of several software components and follows open standards. The

interactive Web Map of the Swiss National Park includes basic functionality like

zoom, pan and simple query, which is satisfactorily supported by MapServer. The

basic functionality has been extended with the possibility of a database attribute

query for layers stored in the PostgreSQL/PostGIS database. This has been solved

with a separate graphical user interface (Information and Query Page) which

intuitively leads the user to a list of query results without needing any knowledge in

SQL. A later visualization or graphic aggregation of the query result in the Web

Map is also possible. The graphical user interface of the Web Map also respects the

dual functionality of legends in interactive Web Maps, combining the classic

legend function with the controlling function for the layers. Both, the database

attribute query and the legend, are programmed dynamically, which enables the

application to react on changes in the data and thus makes it intelligent.

Furthermore, the use and role of classic map elements has been researched:

Numeric scale calculations and distance measuring are not appropriate in web

maps. Legends do not only have to play the traditional role known from paper

maps. They are also used to control the status of the layers, which gives them a dual

functionality. Moreover, the concept of Status and Visibility for map layers has

been introduced in order to respect the fact that not all layers should be visualized

at all scales, but still they should be generally available for the application. In

addition, the consequence of maps on demand, especially with dynamically

92 Conclusions

produced layers, is that also the legends can not remain static. They must be

dynamically recreated with every map redraw in order to provide only the symbols

that occur in the map and the functionality that is useful and making sense at any

time.

9.2 Insights

As already mentioned, this project has shown that it is possible to set up a working

interoperable multi-component application consisting of Open Source software

products for the visualization of spatial data. One of the insights is, that also the

installation and maintenance of the system consume a big part of the time that has

to be put into such a project. System architecture issues play an important role for

the functioning and the performance. Furthermore, the more ideas are added to an

application, the more they need to be weighed against each other: The realization of

a new cartographic concept can make a user interface appear less intuitive at a first

look, although the original intention was to make it more intuitive.

9.3 Outlook

The WebGIS SNP prototype and this thesis contribute to the efforts of the Swiss

National Park to find the appropriate solution for a comprehensive presentation of

its GIS data (including metadata) on the WWW � an issue which is currently still

under discussion.

Future improvements of the prototype should primarily address the performance,

which is sometimes poor when redrawing the legend and map for the visualization

of layers that are created dynamically. This could be reached by not using a CGI

program or by using a different programming language (e.g., Java).

While some recent developments in web mapping tend towards client-centric

applications using SVG, Map Servers are still a good solution if the control over the

application shall mainly stay in the hand of the developer. However, vector output

(PDF and SWF) is one of the features expected in the next version 3.7 of the UMN

Chapter 9 93

MapServer, accompanied by 24-bit image support. Concerning the dynamic

character of applications, future solutions might possibly go one step further and

not only build the legends, layers and classes dynamically, but also detect the

available data from different sources. A Map File could thus be almost empty,

accompanied by a program or script filling in the configuration parameters of the

data dynamically. Besides, with GEOS fully integrated into PostGIS, a backend

database with the complete Simple Features functionality will soon be available.

The near future will therefore bring a set of powerful tools, enabling the setup of a

WMS capable Interactive Map Server with a backend spatial database � all Open

Source!

Bibliography 95

BIBLIOGRAPHY

[AB92] ALLGÖWER, B., BITTER, P.: Konzeptstudie zum Aufbau eines

Geographischen Informationssystems für den Schweizerischen

Nationalpark (GIS-SNP). Jahresbericht GIS-SNP 1992.

Arbeitsberichte zur Nationalparkforschung. Wissenschaftliche

Nationalparkkommission/Nationalparkdirektion, Zürich, Davos,

1992

[AG97] ADAM, N. R., GANGOPADHYAY, A.: Database Issues in

Geographic Information Systems. Kluwer, Boston, 1997.

[Alb96] ALBRECHT, J. H.: Universal GIS Operations for Environmental

Modeling. In: Proceedings, Third International

Conference/Workshop on Integrating GIS and Environmental

Modeling, Santa Fe, 1996. URL http://www.ncgia.ucsb.edu/conf/,

3.07.2003.

[Asc00] ASCHE, H.: Zum Nutzungspotential konventioneller und

netzbasierter Atlanten: Welchen Mehrwert bieten die Neuen

Medien? In: Proceedings, Symposium Web.mapping.2000, FH

Karlsruhe - Hochschule für Technik, Karlsruhe. pp. VIII.2-

VIII.12, 2000.

[Cec03] CECCONI, A.: Integration of Cartographic Generalization and

Multi-Scale Databases for Enhanced Web Mapping. Dissertation,

Geographisches Institut, Universität Zürich, 2003.

[Cec99] CECCONI, A.: Kartographische Darstellung von statistischen Daten

im Internet. Diplomarbeit, Geographisches Institut, Universität

Zürich, 1999.

96 Bibliography

[Cra99] CRAMPTON, J. W.: Online Mapping: Theoretical Context and

Practical Applications. In: Cartwright, W., Peterson, M.P.,

Gartner, G. (eds.) Multimedia Cartography. Springer, Berlin,

Heidelberg, New York, London, pp. 305-314, 1999.

[CSW00] CECCONI, A., SHENTON, C., WEIBEL, R.: Verwendung von Java für

die kartographische Visualisierung von statistischen Daten auf

dem Internet. Kartographische Nachrichten 50(4), pp. 151-162,

2000.

[CSW99] CECCONI, A., SHENTON, C., WEIBEL, R.: Tools for Cartographic

Visualization of Statistical Data on the Internet. In: Proceedings,

19th International Cartographic Conference, Ottawa, Sect. 5,

pp.59-69, 1999.

[DiB91] DIBIASE, D.: Visualization in the Earth Sciences. Geotimes 36(7),

pp. 13-15, 1991.

[Dic01] DICKMANN, F.: Web-Mapping und Web-GIS. Westermann,

Braunschweig, 2001.

[DZ99] DICKMANN, K., ZEHNER, F.: Computerkartographie und GIS.

Westermann, Braunschweig, 1999.

[Ege96] EGENHOFER, M. J.: Spatial-Query-by-Sketch. Proceedings, IEEE

Symposium on Visual Languages, Boulder, pp. 60-67, 1996.

[ES00] ESTER, M., SANDER, J.: Knowldege discovery in databases:

Techniken und Anwendungen. Springer, Berlin, Heidelberg, New

York, London, 2000.

[FRK+01] FÜRPASS, C., RIEDL, A., KRIZ, K., JORDAN, P., PARTL, F.: Suitability

of a Mapserver from a Cartographic Perspective. In: Proceedings,

20th International Cartographic Conference, Beijing, pp. 2371-

2379, 2001.

Bibliography 97

[Für01] FÜRPASS, C.: Mapserver als Hilfsmittel zur Datenvisualisierung im

Internet - Erläutert anhand des Internetprojektes AtOS, der

Internetversion des Atlas Ost- und Südosteuropa. Diplomarbeit,

Universität Wien, 2001.

[Gar01] GARTNER, G.: Raumbezogene Visualisierung und Präsentationen

im Internet: Stand und Tendenzen. In: Proceedings, Symposium

Web.mapping.2001, FH Karlsruhe - Hochschule für Technik,

Karlsruhe, pp. II.1-II.16, 2001.

[Gar99] GARTNER, G.: Multimedia GIS and the Web. In: Cartwright, W.,

Peterson, M.P., Gartner, G. (eds.) Multimedia Cartography.

Springer, Berlin, Heidelberg, New York, London, pp. 305-314,

1999.

[GB01] GREEN, D., BOSSOMAIER, T.: Online GIS and Spatial Metadata.

Taylor & Francis, London, 2001.

[Gün98] GÜNTHER, O.: Environmental Information Systems. Springer,

Berlin, 1998.

[Gut84] GUTTMAN, A.: R-Trees: A Dynamic Index Structure for Spatial

Searching. Proceedings of the Association for Computing

Machinery, Special Interest Group on Management of Data

(ACM SIGMOD) Conference, Boston, pp. 47-57, 1984.

[Her01] HERRMANN, C. M.: Webmapping � Thesen, Beispiele und

Tendenzen. Kartographische Nachrichten 51(6), pp. 279-285,

2001.

[HGM02] HAKE, G., GRÜNREICH, D., MENG, L.: Kartographie.

Visualisierung raum-zeitlicher Informationen. deGruyter, Berlin,

New York, 2002.

98 Bibliography

[HNP95] HELLERSTEIN, J. M., NAUGHTON, J. F., PFEFFER, A.: Generalized

Search Trees for Database Systems. Proceedings of the 21st

VLDB Conference, Zurich, pp. 562-573, 1995.

[HR01] HÄRDER, T., RAHM, E.: Datenbanksysteme: Konzepte und

Techniken der Implementierung. Springer, Berlin, Heidelberg,

New York, London, 2001.

[HSS01] HEUER, A., SAAKE, G., SATTLER, K.-U.: Datenbanken � kompakt.

mitp, Bonn, 2001.

[Jon97] JONES, C. B.: Geographical Information Systems and Computer

Cartography. Longman, Harlow, 1997.

[KE01] KEMPER, A., EICKLER, A.: Datenbanksysteme. Eine Einführung.

Oldenbourg, München, Wien, 2001.

[KO96] KRAAK, M.-J., ORMELING, F. J.: Cartography: Visualization of

Spatial Data. Longman, Harlow, 1996.

[Köb01] KÖBBEN, B.: Publishing maps on the Web. In: Kraak, M.-J.,

Brown, A. (eds.) Web Cartography: developments and prospects.

Taylor & Francis, London, pp. 73-86, 2001.

[Kra01a] KRAAK, M.-J.: Settings and needs for web cartography. In: Kraak,

M.-J., Brown, A. (eds.) Web Cartography: developments and

prospects. Taylor & Francis, London, pp. 1-6, 2001.

[Kra01b] KRAAK, M.-J.: Trends in cartography. In: Kraak, M.-J., Brown, A.

(eds.) Web Cartography: developments and prospects. Taylor &

Francis, London, pp. 9-19, 2001.

[LR00] LEUKERT, K., REINHARDT, W.: GIS-Internet Architectures.

International Archives of Photogrammetry and Remote Sensing

(IAPRS), Amsterdam, Vol. XXXIII, Part B4, S. 572-578, 2000.

Bibliography 99

[Mac94] MACEACHREN, A. M.: Visualization in Modern Cartography. In:

MacEachren, A.M., Taylor, D.R.F., (eds.) Visualization in

Modern Cartography. Elsevier, Oxford, pp. 1-12, 1994.

[Mac95] MACEACHREN, A. M.: How Maps Work. The Guilford Press, New

York, 1995.

[MK01] MACEACHREN, A. M., KRAAK, M.-J.: Research Challenges in

Geovisualization. Cartography and Geographic Information

Science 28(1), pp. 3-12, 2001.

[OGC02a] OGC (OPEN GIS CONSORTIUM, INC.): URL

http://www.opengis.org, 24.12.2002.

[OGC02b] OGC (OPEN GIS CONSORTIUM, INC.): Web Map Service

Implementation Specification. Version 1.1.1. URL

http://www.opengis.org, 24.12.2002.

[OGC02c] OGC (OPEN GIS CONSORTIUM, INC.): OpenGIS® Geography

Markup Language (GML) Implementation Specification. Version

3.00. URL http://www.opengis.org, 18.02.2003.

[OGC99] OGC (OPEN GIS CONSORTIUM, INC.): OpenGIS® Simple Features

Specification For SQL. Version 1.1. URL

http://www.opengis.org, 18.02.2003.

[Pet01] PETERSON, M.: Webmapping: State of the Art. In: Proceedings,

Symposium Web.mapping.2001, FH Karlsruhe - Hochschule für

Technik, Karlsruhe, pp. I.2-I.8, 2001.

[PS03a] The PostgreSQL Global Development Group: PostgreSQL 7.2

Programmer�s Guide. URL: http://www.postgresql.org,

21.3.2003.

[PS03b] The PostgreSQL Global Development Group: PostgreSQL 7.2

User�s Guide. URL http://www.postgresql.org, 21.3.2003.

100 Bibliography

[Puc01] PUCHER, A.: Datenbankgestützte Visualisierung im Internet -

Anwendungen im grossen Massstab mittels Mapserver-Systeme.

Diplomarbeit, Universität Wien, 2001.

[Ric98] RICHARD, D.: Web maps � Karten im Internet. Vermessung

Photogrammetrie Kulturtechnik 8, 1998. URL

HTTP://WWW.VPK.CH/VPKOL.HTML, 3.2.2003.

[RL85] ROUSSOPOULOS, N., LEIFKER, D.: Direct Spatial Search on

Pictorial Databases Using Packed R-trees. Proceedings of the

Association for Computing Machinery, Special Interest Group on

Management of Data (ACM SIGMOD) Conference, Austin, pp.

17-31, 1985.

[RP02] RECHENBERG, P., POMBERGER, G. (eds): Informatik-Handbuch.

Hanser, München, Wien, 2002.

[RSV02] RIGAUX, P., SCHOLL, M., VOISARD, A.: Spatial Databases with

Application to GIS. Morgan Kaufmann, San Francisco, 2002.

[Sch02] SCHNEIDER, B.: GIS-Funktionen in Atlas-Informationssystemen.

Dissertation, ETH Zürich, 2002.

[She00] SHENTON, C.: Kartographische Visualisierung multivariater,

statistischer Daten in einer verteilten, objekt-orientierten

Umgebung. Diplomarbeit, Geographisches Institut, Universität

Zürich, 2000.

[SNP97] SWISS NATIONAL PARK: GIS-SNP-Benutzeridentifikation II.

Internal paper. 1997

[SR01] SCHMIDT, D., RINNER, C.: Intelligent, interaktiv, internetfähig � die

neue Karten-Generation. In: Herrmann, C., Asche, H. (eds.)

Web.Mapping 1: Raumbezogene Information und Kommunikation

im Internet. Wichmann, Heidelberg, pp.90-99, 2001.

Bibliography 101

[SS98] STEFANAKIS, E., SELLIS, T.: Enhancing Operations with Spatial

Access Methods in a Database Management System for GIS.

Cartography and Geographic Information Science 25(1), pp. 16-

32, 1998.

[Str01] STROBL, J.: Online GIS � das WWW als GIS-Plattform. In:

Herrmann, C., Asche, H. (eds.) Web.Mapping 1: Raumbezogene

Information und Kommunikation im Internet. Wichmann,

Heidelberg, pp.18-29, 2001.

[SVS+01] SHEKHAR, S., VATSAVAI, R.R., SAHAY, N., BURK, T.E., LIME, S.:

WMS and GML based Interoperable Mapping System.

Proceedings of the 9th ACM International Symposium on

Advances in Geographic Information Systems (ACMGIS), Atlanta,

2001.

[VBW+00] VATSAVAI, R.R., BURK, T.E., WILSON, T.B., SHEKHAR, S.: A Web-

based browsing and spatial analysis system for regional natural

resource analysis and mapping. Proceedings of the 8th ACM

International Symposium on Advances in Geographic Information

Systems (ACMGIS 2000), Washington D.C., 2000.

[W3C03] W3C (WORLD WIDE WEB CONSORTIUM): URL

http://www.w3.org, 21.02.2003.

[Wir01] WIRZ, D.: Dynamic Web Publishing with Java and Oracle. Lecture

script, Department of Geography, University of Zurich, 2001.

Appendix 103

APPENDIX

Data

The data that have been used for the WebGIS prototype application are listed here

in order of appearance in the Legend.

�Höhenmodell�: A colored TIFF image, visualizing the digital elevation model

25 of the SNP. Geo-referenced by a TIFF World file (TFW). The original

file (24 bit, 12 MB) was resized (8 bit, no compression, 8 MB). © GIS

Swiss National Park.

�Pixelkarte100�: Scanned Topographic Map of Switzerland 1:100�000,

GeoTIFF with World file, 508 dpi resolution. © Swiss Federal Institute of

Topography. More information can be found at:

http://www.swisstopo/en/digital/pixel.htm.

�Pixelkarte25�: Scanned Topographic Map of Switzerland 1:25�000, GeoTIFF

with World file, 508 dpi resolution. © Swiss Federal Institute of

Topography. More information can be found at:

http://www.swisstopo/en/digital/pixel.htm.

�Parkgrenze�: Border of the Swiss National Park, available as Arc/INFO vector

data set (line). The Coverage has been converted to a Shapefile with

ArcView. © GIS Swiss National Park. More information can be found at:

http://www.nationalpark.ch/

�Parkgebiet�: Area of the Swiss National Park, available as Arc/INFO vector

data set (polygon). The Coverage has been converted to a Shapefile with

ArcView. © GIS Swiss National Park.

�Gemeindegrenzen�: Borders of the political boundaries, available as Arc/INFO

vector data set (polygon). The Coverage has been converted to a Shapefile

with ArcView. © GIS Swiss National Park.

Appendix104

�Geologie�: Geological Units according to the Geological Map �Dössegger�

1987, 1:50�000, available as Arc/INFO vector data set (polygon). The

Coverage has been converted to a Shapefile with ArcView and then

imported into the PostGIS database with the shp2pgsql tool. It contains 57

different geological units, their short description and code of tectonical

units. © GIS Swiss National Park. More information can be found at:

http://www.geo.unizh.ch/nationalpark/gis/daten/grundd/.

�Tektonik�: Tectonical Units according to the Tectonical Map �Dössegger�

1987, 1:400�000, available as Arc/INFO vector data set (polygon). The

Coverage has been converted to a Shapefile with ArcView and then

imported into the PostGIS database with the shp2pgsql tool. It contains 22

different tectonical units, their short description and code of tectonical units.

© GIS Swiss National Park. More information can be found at:

http://www.geo.unizh.ch/nationalpark/gis/daten/grundd/.

�Vegetation�: Vegetation Units according to the Vegetation Map �Zoller� 1992,

1:50�000, available as Arc/INFO vector data set (polygon). The Coverage

has been converted to a Shapefile with ArcView and then imported into the

PostGIS database with the shp2pgsql tool. It contains 39 different

vegetation units, their short description and code, and altitude levels. © GIS

Swiss National Park. More information can be found at:

http://www.geo.unizh.ch/nationalpark/gis/daten/grundd/.

�Fliessgewässer�: Waters of the Swiss National Park (rivers), available as

Arc/INFO vector data set (line). The Coverage has been converted to a

Shapefile with ArcView. © GIS Swiss National Park. More information can

be found at: http://www.geo.unizh.ch/nationalpark/gis/daten/grundd/.

�Wanderwege�: Footpaths within the Swiss National Park, available as

Arc/INFO vector data set (line). The Coverage has been converted to a

Shapefile with ArcView. © GIS Swiss National Park.

Appendix 105

�Parkhütten�: Huts/cabins within the Swiss National Park, available as

Arc/INFO vector data set (line). The Coverage has been converted to a

Shapefile with ArcView. © GIS Swiss National Park.

