

M.Sc Thesis

Design and Implement a Cartographic Client Application

For Mobile Devices using SVG Tiny and J2ME

By
LI Hui

Stuttgart, March 2006

 ii

Design and Implement a Cartographic Client Application

For Mobile Devices using SVG Tiny and J2ME

A dissertation

presented in partial fulfillment of the requirements for

the degree of Master of Science in the

Department of Geomatics, Computer Science and Mathematics

of the University of Applied Sciences Stuttgart

By

LI Hui

Fachhochschule Stuttgart – Hochschule für Technik

University of Applied Sciences

March 2006

Supervisors:

Prof. Dr.-Ing. Franz-Josef Behr

Prof. Dr.-Ing. Dietrich Schroeder

Approved by:

 27.03.2006, Supervisor

Master Course Photogrammetry and

Geoinformatics

Master’s Thesis 2006

LI Hui

Acknowledgement

 iii

STUTTGART UNIVERSITY OF APPLIED SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Acknowledgement

I would like to thank my supervisors Prof. Dr. Franz-Josef Behr and Prof. Dr.-Ing.

Dietrich Schroeder who are the supervisors of my thesis work for their discussion and

positive criticism. I would like to thank many unknown developers in the java forum

who helped me a lot to solve the programming problems. I thank my parents and friends

who are always supporting me.

Master’s Thesis 2006 LI Hui
Cartographic client application
for Mobile Devices
Master Course Photogrammetry and Geoinformatics

 iv

 STUTTGART UNIVERSITY OF APPLIED SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Abstract

The fields of geoinformation technology and cartography have seen dramatic changes in

the last decade. The dissemination of digital geospatial data is no longer bounded by the

desktop platform. It is available now on mobile devices such as PDAs (personal digital

assistants), smart-phones etc.

The mobile devices which support J2ME (Java 2 Micro Edition) offer the users and

developers one open interface, the application developers and users can develop or

download the software according their own demands. At present, J2ME has been one of

the most popular mobile devices development platforms.

Now WMS (Web Map Service) can afford not only traditional raster image, but also the

vector image. SVGT (Scalable Vector Graphics Tiny) is one subset of SVG (Scalable

Vector Graphics) points to mobile devices. Because of its precise vector information,

original styling and small file size, SVGT format is fitting well for the geographic

mapping purpose, especially for the mobile devices which has bandwidth net

connection limitation.

The aim of this research was to develop a cartographic client for the mobile devices,

using SVGT and J2ME technology. Mobile device was simulated on the desktop

computer for a series of testing with WMS, for example, send Getcapabilites and

GetMap request , get the responding data from WMS and then display both vector and

raster format image.

Analyzing and designing of System structure such as user interface and code structure

were discussed, the limitation of mobile device should be taken into consideration for

this applications. The parsing of XML document which was received after the

GetCapabilites request and the visual realization of SVGT and PNG (Portable Network

Graphics) image are important issues in codes’ writing. At last the client was tested on

Nokia S40/60 mobile phone successfully.

Master’s Thesis 2006 LI Hui
Cartographic client application
for Mobile Devices
Master Course Photogrammetry and Geoinformatics

 v

 STUTTGART UNIVERSITY OF APPLIED SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Keywords: Cartographic visualization, J2ME, MIDP, SVG, SVGT, PNG, WMS,
Getcapabilites request, GetMap request, Mobile applications, Mobile cartography,
Scalable Vector Graphics Tiny, Web Map Service, XML parser, Java 2 Micro Edition

Master’s Thesis 2006

LI Hui

Table of Content

 vi

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Table of Content

Acknowledgement..iii

Abstract ... iv

Table of Content ...vi
Table of Figures..ix

Table of Tables ...xi
Table of Listings..xii

1 Introduction..1

1.1 Backgroud... 1

1.2 Problem definition ... 2

1.2.1 Limitation of mobile devices .. 2

1.2.2 XML document parsing.. 2

1.2.3 SVGT/PNG Viewer using and designing 2

1.2.4 User interface designing.. 2

1.3 Motivation ... 3

1.4 Methodology ... 3

1.5 Thesis structure .. 4

2 Background..5

2.1 Mobile application/Location based services.. 5

2.1.1 Location based services .. 5

2.1.2 Mobile devices... 6

2.2 Web Map Service ... 7

2.3 Graphic data formats .. 11

2.3.1 Raster image formats .. 12

2.3.2 Vector image formats .. 12

2.4 Introduction of Scalable Vector Graphics Tiny (SVGT)......................... 13

2.4.1 What is SVGT?.. 13

2.4.2 First impression of SVGT .. 13

2.4.3 Basic Capabilities of SVGT ... 15

2.4.4 SVGT Viewer... 16

Master’s Thesis 2006

LI Hui

Table of Content

 vii

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

2.4.5 Shipping and Announced SVG Phones....................................... 17

2.5 J2ME... 18

2.5.1 What is J2ME? .. 18

2.5.2 The J2ME Architecture.. 18

2.5.3 Mobile Information Device Profile (MIDP).................................... 19

2.5.4 MIDlets .. 21

2.6 XML Document Parsing.. 22

2.6.1 XML parser overview... 22

2.6.2 XML parser in MIDP .. 23

2.7 Earlier work on cartographic visualization for mobile applications 24

3 The implementation...27

3.1 Three testing server environments ... 27

3.1.1 Apache/PHP/MySQL SVG based map WMS in localhost 27

3.1.2 Apache/PHP/MySQL SVG based map WMS from gis-news....... 29

3.1.3 Raster image based map WMS from NASA................................ 31

3.2 Coordinates transformation... 32

3.2.1 Dot pitch .. 32

3.2.2 View Box ... 33

3.3 Design Steps .. 36

3.3.1 Java programming&debugging environment............................... 36

3.3.2 Simulating mobile device... 37

3.3.3 Programming with Eclipse/eclipseme plug-in & Netbeans........... 38

3.3.4 System Structure analyzing and designing.................................. 38

4.4 J2ME Record Management Store (RMS) ... 43

3.4.1 Managing the device database.. 43

3.4.2 Data records operation.. 44

3.5 KXML XML Parser .. 46

3.6 Tinyline SVGT Toolkit ... 47

3.7 Raster image viewer development.. 49

4 Conclusion ...51

4.1 Usability testing... 51

4.1.1 Test with SVG image WMS Server ... 51

Master’s Thesis 2006

LI Hui

Table of Content

 viii

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

4.1.2 Test with other Raster image WMS Server 54

4.1.3 Test with Mobile Phone ... 56

4.2 Summary .. 57

4.2.1 Advantage ... 57

4.2.2 Outlook.. 57

Appendix A ..61

Appendix B ..63

Appendix C ..65

Appendix D ..66

Appendix E...68

Appendix F...70

Declaration...71

References ...72

Master’s Thesis 2006

LI Hui

Table of Figures

 ix

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Table of Figures

Fig. 1: This application can be seen as one user part of the LBS system................................6
Fig. 2: The fragment of the result XML file of GetCapabilities request showed in browser9
Fig. 3: Pyramid of SVG, SVGB and SVGT ...13
Fig. 4: Two images were created to compare the quality of SVG image (left) and raster image

(right) in high scale. SVG graphic kept higher quality; raster image became blurry.15
Fig. 5: The life cycle of a MIDlet ...21
Fig. 6: The user interfaces of J2ME OGC WMS Client 1.10..25
Fig. 7: The user interfaces of J2ME Map 8.03 ..26
Fig. 8: XML file fragment of GetCapabilites request from localhost WebMap server in GIS lab

..28
Fig. 9: GetMap request result and URL of the http://localhost/phpmywms web map server...29
Fig. 10: GetMap request result and URL of www.gis-news.de web map server.....................30
Fig. 11: The raster map in a small scale from NASA...31
Fig. 12: Zoomed view of screen pixels ...32
Fig. 13: Coordinates transformed from SVG view box coordinate system to a geocoded

coordinate system. ..33
Fig. 14: SVG document with 800 (width) x 600 (height) pixels and viewBox with 571887 (width)

x 656109 (height) m...34
Fig. 15: SVG document with 240 (width) x 320 (height) pixels and viewBox with 571887 (width)

x 656109 (height) m...34
Fig. 16: Display area selection ...35
Fig. 17: SVG document with 240 (width) x 320 (height) pixels and viewBox with 24000 (width)

x 32000 (height) m...36
Fig. 18: Interfaces of WTK (Wireless Toolkit) and Series 60 Platform37
Fig. 19: Interface structure of the client from the users’ point of view39
Fig. 20: Code structure of the client from the developers’ point of view.................................42
Fig. 21: Overview of J2ME RMS and MIDlet interfacing..43
Fig. 22: Display the WMS title ..47
Fig. 23: Interface of Tinyline SVGT Viewer 1.9...47
Fig. 24: Interface of Tinyline SVGT Viewer in current application..48
Fig. 25: Read image data as byte array..49
Fig. 26: Interface of raster image Viewer..50
Fig. 27: Loads client, Welcome wait splash, About description ...51
Fig. 28: Connect WMS, wait splash, input coordinate and WMS information.........................52
Fig. 29: Select CRS and layers, Select image format, Error dialog52
Fig. 30: Wait splash, Move SVG map, Zoom in or out..53
Fig. 31: Set the quality of SVG map, View original map, Show Help53

http://www.gis-news.de

Master’s Thesis 2006

LI Hui

Table of Figures

 x

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 32: Add one new WMS server to Server List ...54
Fig. 33: Edit one WMS server in Server List ...54
Fig. 34: Delete one WMS server from Server List...55
Fig. 35: Input raster image coordinate, Select ..55
Fig. 36: Move SVG map, Zoom in or out, View original map...56
Fig. 37: Test with Nokia 6230i..56

Master’s Thesis 2006

LI Hui

Table of Tables

 xi

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Table of Tables

Tab. 1: The parameters are required by the GetCapabilities request (OPEN GEOSPATIAL

CONSORTIUM, Web Map Service Specification, 2004) ...8
Tab. 2: The parameters are required by the GetMap request (OPEN GEOSPATIAL

CONSORTIUM, Web Map Service Specification, 2004) ...10
Tab. 3: Shipping and Announced SVG Phones ...17
Tab. 4: The current offering of small XML parsers that are appropriate for MIDP..................24

Master’s Thesis 2005

LI Hui

Table of Listings

 xii

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Table of Listings

Listing 1: The format of GetCapabilities request in a URL...8
Listing 2: The format of GetMap request in a URL..10
Listing 3: The format of GetMap request in a URL..14
Listing 4: DTD in the DOCTYPE declaration ..14
Listing 5: The GetCapabilities request in a URL ...28
Listing 6: The GetMap request in a URL ..28
Listing 7: The GetMap request in a URL ..30
Listing 8: The GetMap request in a URL ..31
Listing 9: Formulary to calculate the pixel scale..32
Listing 10: Formulary to calculate the map scale ..33
Listing 11: Example of codes written in OOP method ...40
Listing 12: Create or open a RecordStore ..44
Listing 13: Close a RecordStore...44
Listing 14: Delete a RecordStore ...44
Listing 15: Insert a Record ...44
Listing 16: Update a Record...45
Listing 17: Read a RecordStore ...45
Listing 18: Delete a RecordStore ...45
Listing 19: One section of the GetCapabilities XML document..46
Listing 20: Get the GetCapabilities XML data from WMS..46
Listing 21: Picking up WMS title from GetCapabilities XML data...47
Listing 22: load and Initialize the Tinyline SVGT Viewer ...48
Listing 23: Create static image though binary PNG format..49
Listing 24: The GetCapabilities request in URL of USGS WMS ..54
Listing 25: The Exception element content 1 in XML content ..58
Listing 26: The Exception element content 2 in XML content ..58
Listing 27: Embed Google Map in users own web page using JavaScript59

Master’s Thesis 2006

LI Hui

Introduction

 1

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

1 Introduction

1.1 Backgroud

In the nineties, Web maps and digital maps became popular due to the success of the

Personal Computers and the Internet. These mapping technologies allow

personalization and adaptation, are easily deliverable, revised in shorter times, can

incorporate multimedia, and may be interactive. Now the popularity of mobile devices

such as PDA's, mobile phones etc. and the availability of development environments

such as J2ME (Java 2 Micro Edition) for such devices have made possible to design

and develop of new kind of cartographic client software. No doubt that in the future

cartographic data is not PC centric but would be available on mobile systems.

But the map display on a handheld device is a challenge to cartography due to the

limiting factors such as screen size, colors, resolution, processing power, memory and

power supply. And people will demand more advanced reliable applications. J2ME

was born to help solving such problems. In this Java based development environment,

the Connected Limited Device Configuration (CLDC) and the Mobile Information

Device Profile (MIDP) are specifically designed for the wireless devices.

In the earlier years, the Web Map Service (WMS) mostly based on raster image

format. Due to big size and limited bandwidth, the raster image format is also one

obstacle to the data transforming from PC to mobile device. But after the birth of

vector image format, every thing has changed. The Scalable Vector Graphics (SVG)

is an open standard for encoding geographic information in a XML language defined

by W3C and it becomes one part of WMS recommendations. As one subset of SVG,

Scalable Vector Graphics Tiny (SVGT) is not related to any specific hardware or

software platform: data encoded using it can be easily read and understood by any

programming language and software system able to parse XML streams. SVGT

encodes vector geographical information together with metadata on spatial and

non-spatial resources.

Master’s Thesis 2006

LI Hui

Introduction

 2

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

In this application, SVGT and J2ME are collaborating to design and implement a

cartographic WMS client for mobile devices.

1.2 Problem definition

1.2.1 Limitation of mobile devices

The popularity of handheld devices and mobile Internet gives a new platform to

geoinformation. But cartographic visualization for small displays of mobile devices is

restricted by several technical limitations such as the small display size and resolution,

lack of processing power and memory, most critical the battery life, and the mobile

network bandwidth. When writing J2ME codes, those limitations should be

considered, especially for memory, screen size, and network bandwidth.

1.2.2 XML document parsing

Once the users send the GetCapabilities Request to the WMS, the client gets a XML

format file as the responded data. The parameters of the GetMap Request URL in the

content of this XML document should be picked up and be set in the GetMap Request

URL. Because every WMS has its own Document Type Definitions (DTD) for

GetCapabilities Request XML document, it is a big challenge to find one common

solution to parse those different XML document.

1.2.3 SVGT/PNG Viewer using and designing

To display the result map file, SVGT TinyLine or PNG raster image format viewer

will be loaded depending on which kind of image formats supported by the WMS.

How to implement the Tinyline SVGT viewer as one embedded part of the client?

How to read and redraw the PNG image file?

1.2.4 User interface designing

This client should be designed as one complete WMS client with full functions that

are same as the PC client. Thus it should include several basic interface for the users

to select server address, input coordinate of the search point, select layers and

Master’s Thesis 2006

LI Hui

Introduction

 3

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

corresponding Coordinate Reference System (CRS), and zoom and pan the result map,

etc. It is not easy to let those interfaces run without mistakes in one clear workflow.

1.3 Motivation

The reason to choose this domain is that this is an upcoming field and has a lot of

scope from a research point of view. Further, the client designing on the mobile

devices seems interesting and challenging, and till now most of all the WMS clients

for the mobile phone are based on raster image format, not vector image format,

which was also a motivation to choose this as research area.

Moreover the coming times are going to large-scale development of commercial

applications based on location based services. Such application can be extended in

many aspects, such as navigation, mobile service, library service and so on.

1.4 Methodology

According to the objectives, the corresponding methodology is established.

1. Pre-Analysis: The current situation will be analyzed, including the study of

the theory part of J2ME and SVGT, how to parse XML document in mobile

devices etc.

2. Selection of scenario: The testing system will be selected, including the

testing software and servers. Several Web Map servers which produce SVGT

(SVG) map or raster image will be as the testing server.

3. Design the code structure and user interface: In this step, the code structure

and user interface should be designed as one clear workflow in advance.

4. Debug the codes: The codes will be debugged carefully and using some

virtual simulator to test it.

5. Test of client: The client will be tested both on mobile phone and on simulator,

trying to connect different WMS to check its performance.

Master’s Thesis 2006

LI Hui

Introduction

 4

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

1.5 Thesis structure

The structure will try to follow a logical sequence to achieve the objective of the study.

This chapter introduced the problems and challenges of visualizations for mobile

devices and outlined the goals and contributions of this thesis. The remainder of the

thesis is structured as follows:

Chapter 2: Background of cartographic client on mobile devices

This chapter reviews the existing mobile devices and Location Based Service. It

explains the definitions of WMS, image format, SVGT and J2ME, XML parser which

play important role in the following research. At last some similar earlier application

will be introduced.

Chapter 3: Implementation of this application

This chapter describes the workflow of how to implement the client. At first chooses

the testing WMS which support SVG image and PNG raster image, coordinate

transformation is explained. After that, describes the code structure in both users’ and

developer’s views, and user interface, J2ME Record Management Store and method

to use kXML to parse the XML document, and method to use TinyLine SVGT SDK.

Chapter 4: Conclusions and outlook

This chapter discusses about the conclusions of client test on simulator and on Nokia

S40/60 mobile phones. Further in conclusion the summary of whole work is given and

scope for further research.

Master’s Thesis 2006

LI Hui

Background

 5

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

2 Background

2.1 Mobile application/Location based services

2.1.1 Location based services

Nowadays the telecom industry is eying at the marriage of geoinformation services

and mobile devices in the form of Location Based Services (LBS). In general case,

LBS can be defined as services utilizing the ability to dynamically determine and

transmit the location of persons within a mobile network by the means of their

terminals. LBS provide specific, relevant information based on the current position to

the user. The Open Geospatial Consortium (OGC 2003) defined LBS as a wireless-IP

service that uses geographic information to serve a mobile user or any application

service that exploits the position of a mobile terminal.

LBS/Mobile applications cover many aspects linked to human mobility such as:

Navigation,

Health/Safety/Security/Emergency,

Convenience,

Entertainment,

Travel Aids,

Productivity Aids,

Mobile Work Force Management etc

For an example a visitor want to find the nearest hotel, he needs nothing about names

and addresses of those hotels which are within his reach, LBS will tell him the hotels

in say 1 sq.km according to his position, selected out of the database of say 1000

hotels in the city spread over 2000 sq.km.

WMS can be chosen to use as server part of LBS, and one typical LBS system could

be the followings: The user has one instrument (for example, GPS), it sends the

position parameters of the user to the WMS though wireless net, and the WMS

responses with the service according to the position, the data can be received from the

Master’s Thesis 2006

LI Hui

Background

 6

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Database (for example, Oracle spatial data). At last the data requested was sent back

to the Mobile Client as map in form of image. This application can be seen as one

user part of the LBS system, see Figure 1.

Fig. 1: This application can be seen as one user part of the LBS system

In this system, because of the limited ability of the mobile client, the most of

collection and calculation of the data should be performed in WMS, and the Mobile

client only sends request and receives the result data.

2.1.2 Mobile devices

Mobile device is a wide term covering information terminals, information appliances,

Personal Digital Assistant (PDA), mobile phones etc. According to Gartner (2003),

mobile devices can be broadly classified into two categories”: Cellular phones with

increasing computing capabilities, including the display of graphics and the enabling

of interaction via graphics (Smartphones, Communicator) and Portable computers,

which can be upgraded to voice communication capabilities (e.g. PDA)

Each mobile device has its own Operation System (OS), which is to give user

interface and control the devices synchronous. Now there are four main OS in the

market: Symbian, Smartphone, Palm OS, Linux. Symbian was built by Nokia,

Motorala and Erison. In 2005, the mobilephones that have been installed Symbian OS

occupy 51% of the smartphnes in the world (Internetnews.com1, 2006). Though, for

1 http://www.internetnews.com/wireless/article.php/3584431

GPS/LBS

Mobile Client

Position data

Wireless
communication

User Request

User Request

Data Data

Database

WMS

Request Get
Data

http://www.internetnews.com/wireless/article.php/3584431

Master’s Thesis 2006

LI Hui

Background

 7

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

this research the considered devices are the mobile phone model which has Symbian

OS.

2.2 Web Map Service

Web Map Service (WMS) is an International Standard (ISO 19128: 2005 Geographic

information - Web map server interface) which defines a "map" to be a portrayal of

geographic information as a digital image file suitable for display on a computer

screen. WMS is a specification that produces maps of spatially referenced data

dynamically from geographic information. WMS-produced maps are generally

rendered in a pictorial format such as PNG, GIF or JPEG, or occasionally as

vector-based graphical elements in Scalable Vector Graphics (SVG) or Web

Computer Graphics Metafile (WebCGM) formats.

An OGC compliant WMS applies to three different requests: GetCapabilities, GetMap

and GetFeatureInfo. GetCapabilities and GetMap requests are mandatory,

GetFeatureInfo is an optional request. Each server that follows the Web Map Service

specification has to provide the interface to the users to input the standard parameters

and if these parameters are valid the server must serve the data corresponding to the

request. The methods to send the request from a client to a server are various. If the

client is a browser, the parameters are sent inside the Uniform Resource Locator

(URL); if the client is mobile device the request is sent also in URL though wireless

net.

For GetCapabilities request, if the parameters are inputted correctly, the service-level

metadata in form of XML document will be returned, including the information about

the image formats and layers which are available in the server, the corresponding

coordinates system names, the bounding box value for each coordinates system, the

map formats and the contact person and so on.

Master’s Thesis 2006

LI Hui

Background

 8

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

The parameters of the GetCapabilities request are shown in Table 2:

Request Parameter
Mandatory
Optional

Description

VERSION=version O Request version

SERVICE=WMS M Service type

REQUEST=GetCapabilities M Request name

FORMAT=MIME_type O Output format of service metadata

UPDATESEQUENCE=string O Sequence number or string for cache control

Tab. 1: The parameters are required by the GetCapabilities request (OPEN GEOSPATIAL
CONSORTIUM, Web Map Service Specification, 2004)

A valid GetCapabilities request should include all the parameters which specified as

mandatory in Table 2. The format of GetCapabilities request in a URL likes this:

Listing 1: The format of GetCapabilities request in a URL

Inside the URL, “http” is the requested Internet protocol. “www.gis-news.de” is the

server name; “/wms/getmapcap.php” shows the path of the document on the server.

The “?” indicates the starting of the query string. “SERVICE=WMS” defines the

service type, “VERSION=1.1.1” indicates the server should support OGC WMS

version 1.1.1 and “REQUEST=GetCapabilities” tells the server the user asks for the

GetCapabilities service.

The response of the GetCapabilities request is a XML format document (see Figure

3).

http://www.gis-news.de/wms/getmapcap.php?VERSION=1.1.1&SERVICE=WM
S&REQUEST=GetCapabilities

http://www.gis-news.de
http://www.gis

Master’s Thesis 2006

LI Hui

Background

 9

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 2: The fragment of the result XML file of GetCapabilities request showed in browser

In the next step, the user selects the value of the parameters of GetMap request

depending on the information from the GetCapabilities result. For example, the

information about the map formats is provided in the GetCapabilities result document.

In this case, <Format>image/svg+xml<Format> means that the available map format

in this server is: SVG

The parameters of a GetMap request are shown in Table 3:

Master’s Thesis 2006

LI Hui

Background

 10

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Request Parameter
Mandatory
Optional

Description

VERSION=1.3.0 M Request version

REQUEST=GetMap M Request name

LAYERS=layer_list M
Comma-separated list of one or more map
layers

STYLES=style_list M
Comma-separated list of one rendering style
per requested layer

CRS=namespace:identifier M Coordinate reference system

BBOX=minx,miny,maxx,maxy M
Bounding box corners (lower left, upper
right) in CRS units

WIDTH=output_width M Width in pixels of map picture

HEIGHT=output_height M Height in pixels of map picture

FORMAT=output_format M Output format of map

TRANSPARENT=TRUE|FALSE O
Background transparency of map
(default=FALSE)

BGCOLOR=color_value O
red-green-blue color value for the
background color (default=0xFFFFFF)

EXCEPTIONS=exception_format O
The format in which exceptions are to be
reported by the WMS (default=XML)

TIME=time O Time value of layer desired

ELEVATION=elevation O Elevation of layer desired

Tab. 2: The parameters are required by the GetMap request (OPEN GEOSPATIAL
CONSORTIUM, Web Map Service Specification, 2004)

The format to send GetMap request in URL is like this:

Listing 2: The format of GetMap request in a URL

http://www.gis-news.de/wms/getmapcap.php?VERSION=1.1.1&BBOX=18977
5.33,4816305.37,761662.27,5472414.18&LAYERS=airports,ctybdpy2,AUSSTA
TE1&STYLES=,,&REQUEST=GetMap&layer1=airports&layer2=ctybdpy2&layer3
=AUSSTATE1&style=&SRS=EPSG:26715&4340&minx=189775.33&miny=481
6305.37&maxx=190051.33&maxy=4816525.37&WIDTH=800&HEIGHT=600&
FORMAT=image/svg+xml&EXCEPTIONS=application/vnd.ogc.se_xml&transpar
ent=True

http://www.gis

Master’s Thesis 2006

LI Hui

Background

 11

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Following the same principle, a valid request should include all the mandatory

parameters. In the URL above, “http://www.gis-news.de/wms/getmapcap.php?” gives

the server name and the path of the file resource on the server. “VERSION=1.1.1”

indicates the server supports OGC WMS version 1.1.1 and

“REQUEST=GetCapabilities” tells the request name.

“BBOX=189775.33,4816305.37,761662.27,5472414.18” and “SRS2=EPSG3: 26715”

define the bounding box which indicates the specific required region in the given

coordinates system. “HEIGHT=800” and “WIDTH=600” defines the size of the

image. “FORMAT=image/svg+xml” defines the output format of the image in this

case it is SVG format. “LAYERS= airports,ctybdpy2,AUSSTATE1” defines the

layers which requested by the user. The result of the GetMap request is a vector or

raster image map to be displayed in the browser. All the parameters should be picked

up from the GetCapabilities XML Document.

The GetFeatureInfo request is an option. It has not been involved in the

implementation of this thesis, so it will not be discussed here.

2.3 Graphic data formats

As discussed above, the output image format is a very important parameter of the

GetMap request. At the moment there are more than 44 different graphic format

names, but there actually are only two basic methods for a computer to render, or

store and display an image: raster image format and vector image format.

Raster image formats (RIFs) should be the most familiar to Internet users. A Raster

format breaks the image into a series of colored dots called pixels. The number of

ones and zeros (bits) used to create each pixel denotes the depth of color you can put

into your images. There are various raster image formats available such as Tagged

Image File Format (TIFF), Graphics Interchange Format (GIF), Joint Photographic

Expert Group (JPEG) and Standard Windows Bitmap (BMP).

2 Spatial Reference System
3 European Petroleum Survey Group (http://www.epsg.org)

http://www.gis-news.de/wms/getmapcap.php
http://www.epsg.org)

Master’s Thesis 2006

LI Hui

Background

 12

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Vector formats are newly implemented into geographic mapping and becoming more

and more popular. They are actual vectors of data stored in mathematical formats

rather than bits of colored dots. This formatting falls into a lot of proprietary formats,

formats made for specific programs. CorelDraw (CDR), Hewlett-Packard Graphics

Language (HGL), Windows Metafiles (EMF), SVG (Scalable Vector Graphic) and

WebCGM (Web Computer Graphics Metafile).

2.3.1 Raster image formats

A raster image file is generally defined to be a rectangular array of regularly sampled

values, known as pixels. Each pixel (picture element) has one or more numbers

associated with it, generally specifying a color which the pixel should be displayed in.

The most common file format that used for mobile device is PNG (Portable Network

Graphics). PNG is a bitmap format that was developed by the World Wide Web

Consortium especially for the web; it is fully streamable with a progressive display

option.

The PNG format has several advantages over other graphics formats; for example, it

is license free and supports true color images, including a full transparency (alpha)

channel. PNG images are always compressed with a loss-less algorithm. The

algorithm is identical to the algorithm used for JAR files, so the mobile

implementation can save space by using the same algorithm for both purposes.

2.3.2 Vector image formats

Vector image files record images descriptively, in terms of geometric shapes. These

shapes are converted to bitmaps for display on the monitor. Vector images are easier

to modify, because the components can be moved, resized, rotated, or deleted

independently. The W3C has produced an XML-based format called Scalable Vector

Graphics (SVG). SVG has been widely used in GIS Internet mapping purpose, and it

is more optimal compared to other vector image formats.

Master’s Thesis 2006

LI Hui

Background

 13

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

SVG Basic (SVGB) is a subset of SVG, and SVG Tiny (SVGT) is a subset of SVG

Basic. These light versions of SVG are designed to accommodate cellphones and

other handheld devices with limited screen real estate, memory and bandwidth. SVGT

is the format involved in the implementation of this thesis. The theoretical issues of

SVGT are discussed as following.

2.4 Introduction of Scalable Vector Graphics Tiny (SVGT)

2.4.1 What is SVGT?

Because of industry demand, two mobile profiles were introduced with SVG 1.1: SVG

Tiny (SVGT) and SVG Basic (SVGB). These are subsets of the full SVG standard,

mainly intended for user agents with limited capabilities. In particular, SVG Tiny was

defined for highly restricted mobile devices such as cellphones, and SVG Basic was

defined for higher level mobile devices, such as PDAs. Hence, it was decided that

SVG Tiny would be a strict subset of SVG Basic, itself a strict subset of SVG Full.

See Figure 3:

Fig. 3: Pyramid of SVG, SVGB and SVGT

2.4.2 First impression of SVGT

Since SVGT is an XML format and follows the XML grammar. SVGT grammar is

based on an XML DTD. It starts and ends with an “SVG” tag. Objects are placed

within the SVGT object to form graphics. Some basic drawing components are

provided, such as rectangle, circle, ellipse, line, polyline and polygon; the

SVG Tiny

SVG Basic

SVG Full

Master’s Thesis 2006

LI Hui

Background

 14

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

corresponding style parameters are also defined. Furthermore, another command

“path” is provided to describe lines and curves between points. Additionally

transformations, masking, linking, temporal effects and animation are also possible.

SVGT is XML-based graphics, the source code for SVGT graphic is not held in any

arbitrary text format, but an SVGT image or an SVGT document is a “well-formed”

XML document. A well-formed SVGT document might have a structure which could

look like this:

Error!

Listing 3: The format of GetMap request in a URL

The first line of the SVGT file header is the standard XML processing instruction that

efficiently states that this document conforms to the XML 1.0 specification, uses

UTF-8 character encoding and depends on a Document Type Definition (DTD)

external to the document to parse correctly. Following that might be a DOCTYPE

declaration that provides information to the SVGT rendering engine (also called SVG

viewer) about what structure to expect in the SVGT document. The “DOCTYPE”

states where the DTD is located and the name of the document element it will be

applied to. In this case, the DTD is applied to a document element name “svg”. In the

DOCTYPE declaration,

Listing 4: DTD in the DOCTYPE declaration

Listing 4 is the URL for the file that defines the allowable structure of an SVGT

document, for example the grammar and rules for the document. More specifically, an

SVGT document also must be “valid”. In XML terminology, that means the SVGT

image must be structured in the way demanded by the Document Type Definition

<?xml version="1.0" encoding=”UTF-8” standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 20010904//EN"

 "http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd">

<svg:svg width="4cm" height="8cm" version="1.1" baseProfile="tiny" >

 <svg:ellipse cx="2" cy="4" rx="2" ry="1" />

</svg:svg>

"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd"

http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd
http://www.w3.org/TR/2001/REC

Master’s Thesis 2006

LI Hui

Background

 15

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

(DTD) for the SVGT language. The SVGT rendering engine needs to process an

SVGT document with an appropriate, predictable structure, and the DTD helps that

this process goes smoothly.

The “svg” element contains all other elements. It is the document element of the

document. Inside this element, the developers can add their own codes which describe

their graphic by applying the standard shape elements and attribute which are

provided by SVGT.

2.4.3 Basic Capabilities of SVGT

The use of the word "scalable" in SVG has two meanings. First, vector graphic images

can easily be made scalable; for example, they are not limited to a single and fixed

pixel size. This means SVG format can be displayed on any device of any size and

any resolution without changing the image clarity. This contrasts with raster image

files, which are difficult to modify without loss of information. When the raster

images are zoomed in to large scales, the content of the image becomes blurred.

SVGT graphics don’t have the blur problem because of their vector property. Figure 4

shows a comparison of the quality of a SVGT graphic and a JPEG graphic. The

difference can be seen easily. When the graphics are zoomed into a big scale, the

raster image becomes blurred and the borderline becomes unclear.

Fig. 4: Two images were created to compare the quality of SVG image (left) and raster image
(right) in high scale. SVG graphic kept higher quality; raster image became blurry.

Master’s Thesis 2006

LI Hui

Background

 16

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

On top of basic shapes like rectangles, ellipses, circles, lines, polygons, etc, SVGT

offers full support for Bezier type curves, with only the elliptical arc commands not

available. The second most basic set of features that you'll be looking at in SVG Tiny

will probably be text.

SVG Tiny delivers by allowing for most text operations from SVG Full, apart from

text on a path and text fragments. Still in the text area, SVG Tiny supports simple

SVG fonts definitions so that you can ensure your types design will be respected

across all devices and most importantly scale well (as opposed to system fonts).

Raster images are also supported, with the two mandated formats being PNG and

JPEG.

SVG Tiny supports solid fills and strokes on paths and basic shapes. On the other

hand, gradients and pattern fills are not available; they were thought to be too

computing-intensive for the SVG Tiny 1.1 timeframe. Opacity, masks and clips are

not there either for the same reasons.

One of the main design goals of SVG Tiny was to provide a solution for the new

generation of messaging services. In order to cater to this requirement, SVG Tiny was

designed to offer the full spectrum of what SVG Full offers in terms of animation

capabilities. All the elements and attributes supported by SVG Tiny can be animated,

using either discrete, paced, or finely-tuned interpolations, or even motion paths. All

of this allows for the creation of SVG cartoons and gimmicky animations.

2.4.4 SVGT Viewer

There are quite a few available implementations for consuming SVG Tiny content on

a mobile device.

The first one to mention is TinyLine4, because it's easy to obtain, it's free, and it can be

run on a phone that doesn't ship with a built-in SVG implementation. ZOOMON

4 http://www.tinyline.com

http://www.tinyline.com

Master’s Thesis 2006

LI Hui

Background

 17

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Mobile Solutions5 has been in the SVG game from day one, as the first mobile

vendors were joining the SVG Working Group and getting work underway toward

creating the SVG Mobile specification. Canadian company BitFlash6 was also a very

early contributor to the SVG Working Group. In that capacity, BitFlash has acted as a

tremendous community evangelizer for SVG Mobile and committed very early to

providing high-quality SVG Tiny and SVG Basic implementations. And there are

many other commercial viewer softwares.

In this application, TinyLine viewer is chosen because it is open source and free.

2.4.5 Shipping and Announced SVG Phones

Because of the many advantages of SVGT, more and more mobile phones begin to

support this format. Here is an updated list of phones that come fully equipped with a

compliant SVG Tiny 1.1 implementation.

Motorola C975, C980, E770V, E1000, i870, V3X, V975, V980, V1050
NEC V703N, V802N
Nokia 3250, 6265, 6280, 6282, 7370, 7710, E60, E61, E70, N70, N71, N80,

N90, N91, N92
Panasonic MX6, MX7, SA6, SA7, VS3, VS7
Sagem my-X8, my-V76, my-V85

Samsung D600, E350, Z300, Z500, ZV10, ZV30
Sanyo S750
Sharp V501SH, V601SH, V602SH, V603SH, V604SH, V703SH, V703SHf,

802, V804SH, 902, V903SH
Siemens C65, C70, C75, CF65, CFX65, CL75, CX65, CX70, CX70 Emoty,

CX75, M65, M75, S65, S75, SF65, SL65, SL75, SK65, SP65
Sony
Ericsson

D750, F500, K300, K500, K508, K600, K608, K610, K700, K750,
M600, P990, S600, S700, S710, V600, V800, W550, W600, W800,
W810, W900, W950, Z500, Z520, Z800

Toshiba TS 803, TS 921, V902T, V903T
Tab. 3: Shipping and Announced SVG Phones

One SVGT example was offered in Appendix E.

5 http://www.zooomon.com
6 http://www.bitflash.com

http://www.zooomon.com
http://www.bitflash.com

Master’s Thesis 2006

LI Hui

Background

 18

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

2.5 J2ME

2.5.1 What is J2ME?

J2ME is a lean Java platform targeted specifically at applications running on small

devices such as mobile phones, PDAs, Internet screenphones, digital television set-top

boxes, as well as a broad range of embedded devices. Like its counterparts for the

enterprise (J2EE), desktop (J2SE) and smart card (Java Card) environments, J2ME

includes Java virtual machines and a set of standard Java APIs defined through the

Java Community Process (JCP) by an expert group of more than 50 companies,

including leading device manufacturers, wireless carriers, and vendors of mobile

software.

J2ME delivers the power and benefits of Java technology to consumer and embedded

devices. It includes flexible user interfaces, a robust security model, a broad range of

built-in network protocols, and extern support for networked and offline applications

that can be downloaded dynamically. Applications based on J2ME specifications are

written once for a wide range of devices, also exploit each device's native capabilities.

The J2ME platform is deployed on millions of devices, supported by leading tool

vendors, and used by companies worldwide. In short, it is the platform of choice for

today's consumer and embedded devices.

2.5.2 The J2ME Architecture

The J2ME architecture comprises a variety of configurations, profiles, and optional

packages that implementers and developers can choose from, and combine to

construct a complete Java runtime environment that closely fits the requirements of a

particular range of devices and a target market. Each combination is optimized for the

memory, processing power, and I/O capabilities of a related category of devices. The

result is a common Java platform that takes full advantage of each type of device to

deliver a rich user experience.

Master’s Thesis 2006

LI Hui

Background

 19

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

2.5.2.1 Configurations

Configurations comprise a virtual machine and a minimal set of class libraries. They

provide the base functionality for a particular range of devices that share similar

characteristics, such as network connectivity and memory footprint. Currently, there

are two J2ME configurations: the Connected Limited Device Configuration (CLDC)

and the Connected Device Configuration (CDC).

2.5.2.2 Profiles

To provide a complete runtime environment for a specific device category a

configuration must be combined with a profile, a set of higher-level APIs that further

define the application life-cycle model, the user interface, and access to

device-specific properties. A profile supports a narrower category of devices within

the framework of a chosen configuration. A widely adopted example is to combine

CLDC with the Mobile Information Device Profile (MIDP) to provide a complete

Java application environment for cell phones and other devices with similar

capabilities.

2.5.2.3 Optional Packages

The J2ME platform can be extended by adding various optional packages to a

technology stack that includes either CLDC or CDC and an associated profile.

Created to address very specific application requirements, optional packages offer

standard APIs for using both existing and emerging technologies such as database

connectivity, wireless messaging, multimedia, Bluetooth, and web services. Because

optional packages are modular, developers can avoid carrying the overhead of

unnecessary functionality by including only the packages of an application actually

needs.

2.5.3 Mobile Information Device Profile (MIDP)

The Mobile Information Device Profile (MIDP) is a key element of J2ME. CLDC and

MIDP provide the core application functionality required by mobile applications, in

Master’s Thesis 2006

LI Hui

Background

 20

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

the form of a standardized Java runtime environment and a rich set of Java APIs. The

MIDP specification was also defined through the Java Community Process (JCP) and

it defines the J2ME platform for dynamically and securely deploying optimized,

graphical, networked applications.

MIDP has been widely adopted as the platform of choice for mobile applications.

Companies around the world have already taken advantage of MIDP to write a broad

range of consumer and enterprise mobile applications.

2.5.3.1 Specifications

MIDP 2.0 is a revised version of the MIDP 1.0 specification. New features

include an enhanced user interface, multimedia and game functionality, more

extensive connectivity, over-the-air provisioning (OTA), and end-to-end

security. MIDP 2.0 is backward-compatible with MIDP 1.0, and continues to

target mobile information devices like mobile phones and PDAs.

MIDP 1.0 is the original specification, which provides core application

functionality required by mobile applications, including basic user interface

and network security.

2.5.3.2 Benefits

 Rich User Interface Capabilities: MIDP applications provide the foundation

for highly graphical and intuitive applications.

 Extensive Connectivity: MIDP enables developers to exploit the native data

network and messaging capabilities of mobile information devices.

 Multimedia and Game Functionality: MIDP is ideal for building portable

games and multimedia applications.

 Over-the-Air-Provisioning: A major benefit of MIDP is its capability to

deploy and update applications dynamically and securely, over the air.

Master’s Thesis 2006

LI Hui

Background

 21

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

 End-to-End Security: MIDP provides a robust security model that complies

with open standards and protects the network, applications, and mobile

information devices.

2.5.4 MIDlets

All applications for the MID Profile must be derived from a special class, MIDlet.

The MIDlet class manages the life cycle of the application. It is located in the package

javax. microedition.midlet.

MIDlets can be compared to J2SE applets, except that their state is more independent

from the display state. A MIDlet can exist in four different states: loaded, active,

paused, and destroyed. Figure 5 gives an overview of the MIDlet lifecycle. When a

MIDlet is loaded into the device and the constructor is called, it is in the loaded state.

This can happen at any time before the program manager starts the application by

calling the startApp() method. After startApp() is called, the MIDlet is in the active

state until the program manager calls pauseApp() or destroyApp(); pauseApp() pauses

the MIDlet, and desroyApp() terminates the MIDlet. All state change callback

methods should terminate quickly, because the state is not changed completely before

the method returns.

Fig. 5: The life cycle of a MIDlet

Loaded/pause
d

Pause

startApp() pauseApp(

)

DestroyApp()

DestroyApp()
Active

Destroyed

Master’s Thesis 2006

LI Hui

Background

 22

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

2.6 XML Document Parsing

Extensible Markup Language (XML) is a simple, very flexible text format derived

from Standard Generalized Markup Language (SGML) (ISO 8879). Originally

designed to meet the challenges of large-scale electronic publishing, XML is also

playing an increasingly important role in the exchange of a wide variety of data on the

Web and elsewhere.

More and more enterprise and Java technology projects are making use of XML as a

medium to store data in a portable fashion. But due to the increased processing power

demanded by XML parsers, J2ME applications have largely been left out of this trend.

Now, however, small-footprint XML parsers for the Java language are emerging that

will allow MIDP programmers to take advantage of the power of XML.

2.6.1 XML parser overview

An XML processing model describes the steps an application should take to process

XML; an application that implements such a model is called an XML parser. You can

integrate an XML parser into your Java applications with the Java API for XML

Processing (JAXP). JAXP allows applications to parse and transform XML

documents using an API that is independent of any particular XML processor

implementation. Through a plug-in scheme, developers can change XML processor

implementations without altering their applications.

The XML parsing process operates in three phases:

1. XML input processing. In this stage, the application parses and validates the

source document; recognizes and searches for relevant information based on

its location or its tagging in the source document; extracts the relevant

information when it is located; and, optionally, maps and binds the retrieved

information to business objects.

2. Business logic handling. This is the stage in which the actual processing of the

input information takes place. It might result in the generation of output

information.

Master’s Thesis 2006

LI Hui

Background

 23

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3. XML output processing. In this stage, the application constructs a model of the

document to be generated with the Document Object Model (DOM). It then

either applies XSLT style sheets or directly serializes to XML.

2.6.2 XML parser in MIDP

Parsers are traditionally bulky, featuring lots of code and hefty runtime memory

requirements. In MIDP devices, the memory available for code is usually small and

individual applications may have a maximum code size.

There are three fundamental parser types. Which type you choose depends on how

you want your application to behave and what types of documents you're expecting to

parse.

1. A model parser reads an entire document and creates a representation of the

document in memory. Model parsers use significantly more memory than

other types of parsers.

2. A push parser reads through an entire document. As it encounters various parts

of the document, it notifies a listener object.

3. A pull parser reads a little bit of a document at once. The application drives

the parser through the document by repeatedly requesting the next piece.

Open source parsers are attractive because they give you lots of control. You can

customize a parser if you need additional features, and you can fix the parser if it has

bugs.

The following table summarizes the current offering of small XML parsers that are

appropriate for MIDP.

Master’s Thesis 2006

LI Hui

Background

 24

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Name License Size MIDP Type
ASXMLP 020308 Modified BSD 6 kB yes push, model
kXML 2.0 EPL 10 kB yes pull
kXML 1.2 EPL 16 kB yes pull
MinML 1.7 BSD 14 kB no push
NanoXML 1.6.4 zlib/libpng 10 kB patch model
TinyXML 0.7 GPL 12 kB no model
Xparse-J 1.1 GPL 6 kB yes model

Tab. 4: The current offering of small XML parsers that are appropriate for MIDP

In this application, kXML 2.0 was used as XML parser.

2.7 Earlier work on cartographic visualization for mobile
applications

Here several WMS clients developed by other developers for the mobile devices will

be introduced. This application has extracted some good ideas from those work when

designs the codes structure and user interfaces.

n J2ME OGC WMS Client 1.10

This client was developed by Skylab mobilesystems7, implemented in J2ME

(MIDP1.0/CLDC1.0), to communicate with OGC conform WMS servers (OGC WMS

1.1.0/1.1.1 specifications) and display the requested maps. It is designed to be run on

ultramobile devices like PDAs and mobile phones. It has such features:

• Navigation inside the map (zoom, scroll)

• Free scalable zoom and scroll level

• Unlimited layer selection and presentation

• Server bookmark management

• Manual server input possibility

Figure shows the user Interfaces:

7 http://www.skylab-mobilesystems.com

http://www.skylab-mobilesystems.com

Master’s Thesis 2006

LI Hui

Background

 25

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 6: The user interfaces of J2ME OGC WMS Client 1.10

n J2ME Map 8.03

This client was developed by TomSoft8, it's a small interface to GoogleMap that

allows you to do the following things:

• Browse the entire GoogleMap database

• Swith from GoogleMap/Satelitte and MSN Virtual Earth Maps and Satellite

• Switch between satellite or map view

• Zoom in/zoom out

• Do request to google maps, and show results on screen

• Save your favorite locations

• Have access to some RSS feed to discover some new locations

• Can be extended with your own data

• Automatic painless saving of your preference...

• Use an embeeded GPS if present, to be automatically located

• Use an external GPS connected with Bluetooth, if present

• Support of GPX file format

• Support of touch screen enabeld handsets

8 http://j2memap.landspurg.net/

http://j2memap.landspurg.net/

Master’s Thesis 2006

LI Hui

Background

 26

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Figure 7 shows the user Interfaces:

Fig. 7: The user interfaces of J2ME Map 8.03

Master’s Thesis 2006

LI Hui

The implementation

 27

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3 The implementation

3.1 Three testing server environments

For testing the client, WMS server based on vector and raster image formats should be

chosen. GetCapabilities and GetMap request could be sent to WMS and got the

responding data from WMS.

3.1.1 Apache/PHP/MySQL SVG based map WMS in localhost

l Data selection
The borderline of Germany

Several cities

l Software used

Apache9 2.0.54

PHP10 5.0.5.5

MySQL11 4.1

phpMyAdmin12 2.39.2.2

PHPMyWMS13

.
An PHP based compliant web map server is set up in my laptop as localhost server.

Apache, PHP, MySQL, phpMyAdmin and PHPMyWMS are the server side software.

Apache was used as web server, MySQL was used as database and phpMyAdmin is

used to manager the database. PHPMyWMS was developed by Prof. Behr and Mr.

Filmon, is an open source based WMS compliant web map server, using PHP

technology.

9 http://www.apache.org
10 http://www.php.net
11 http://www.mysql.com
12 http:// www.phpmyadmin.net
13 http://www.gis-news.de/wms/

http://www.apache.org
http://www.php.net
http://www.mysql.com
http://www.phpmyadmin.net
http://www.gis-news.de/wms/

Master’s Thesis 2006

LI Hui

The implementation

 28

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

In this WMS server, the “getmapcap.php” is the main entrance process page. Anytime

when the user sends the requests, this page will be called firstly and the parameters

inside the URL will be analyzed. The corresponding page or function will be

executed.

The “GetCapabilities” request can be called by using the URL

Listing 5: The GetCapabilities request in a URL

The result XML file can be seen in Figure 8:

Fig. 8: XML file fragment of GetCapabilites request from localhost WebMap server in GIS lab

The GetMap request can be called by using URL

Listing 6: The GetMap request in a URL

http://localhost/phpmywms/getmapcap.php?VERSION=1.1.1&BBOX=3538000.0,5444000.0,359
2000.0,5556000.0&LAYERS=city&Bundeslaender&STYLES=%2C%2C&REQUEST=GetMap
&layer2=city&layer1=Bundeslaender&style=&SRS=EPSG:31467&WIDTH=800&HEIGHT=60
0&FORMAT=image/svg+xml&EXCEPTIONS=application/vnd.ogc.se_xml&transparent=TRUE
&button=GetMapRequest

http://localhost/phpmywms/getmapcap.php?VERSION=1.1.1&SERVICE=WMS&REQUEST=Ge
tCapabilities

http://localhost/phpmywms/getmapcap.php?VERSION=1.1.1&BBOX=3538000.0,5444000.0,359

Master’s Thesis 2006

LI Hui

The implementation

 29

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

The result is shown as below (see Figure 9):

Fig. 9: GetMap request result and URL of the http://localhost/phpmywms web map server

The description how to install and configure this localhost SVG map server can be

found in Appendix B.

3.1.2 Apache/PHP/MySQL SVG based map WMS from gis-news

l Data selection

The data from all over the world including city, airport, river etc.

l Software used
The same as what were used in localhost WMS

Master’s Thesis 2006

LI Hui

The implementation

 30

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

The “GeMap” request can be called by using the URL

Listing 7: The GetMap request in a URL

The result is shown as below (see Figure 7):

Fig. 10: GetMap request result and URL of www.gis-news.de web map server

http://www.gis-news.de/wms/getmapcap.php?VERSION=1.1.1&BBOX=189775.33,4816305.37,
761662.27,5472414.18&LAYERS=airports,ctybdpy2,lakespy2&STYLES=,,&REQUEST=GetM
ap&layer1=airports&layer2=ctybdpy2&layer3=lakespy2&style=&SRS=EPSG:26715&minx=18
9775.33&miny=4816305.37&maxx=761662.27&maxy=5472414.18&WIDTH=700&HEIGHT=
700&FORMAT=image/svgxml&EXCEPTIONS=application/vnd.ogc.se_xml&transparent=True
&button=GetMapRequest

http://www.gis-news.de
http://www.gis

Master’s Thesis 2006

LI Hui

The implementation

 31

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.1.3 Raster image based map WMS from NASA

It is a well-known web map server. Map in raster format is dynamically generated

when the GetMap page is called.

The URL of the web map server is:

Listing 8: The GetMap request in a URL

Logical zoom is available in this server. Figure 8 show the application.

Fig. 11: The raster map in a small scale from NASA

http://onearth.jpl.nasa.gov/browse.cgi?wms_server=wms.cgi&layers=global_mosaic&srs=EPSG:4
326&width=1000&height=500&bbox=-180,-90,180,90&format=image/jpeg&styles=&zoom=

Master’s Thesis 2006

LI Hui

The implementation

 32

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.2 Coordinates transformation

3.2.1 Dot pitch

The dot specified by the dot pitch is the smallest physical visual component on the

display. Also called pixel scale, a measurement that indicates the diagonal distance

between like-colored phosphor dots on a display screen (Figure 12). Measured in

millimeters, the dot pitch is one of the principal characteristics that determine the

quality of display monitors. The lower the number, the crisper the image. The dot

pitch of color monitors for personal computers ranges from about 0.15 mm to 0.30

mm.

Fig. 12: Zoomed view of screen pixels

For this research, the display size of a simulator i.e. 240 x 320 pixels on 3.94 inches’

screen is considered. One inch equal to 25.4 mm, which means the pixel scale is 0.25

mm. So the real width and height of the screen i.e. 6 x 8 cms. This is the formulary

how to calculate the pixel scale.

Listing 9: Formulary to calculate the pixel scale

Dot pitch
(Pixel scale)

1 inch = 25.4 mm

Screen.width(mm)2+Screen.height(mm)2 =(Screen.size(inch) x

25.4(mm))2

Dot pitch(Pixel scale) = Screen.width(mm)/ Screen.width(px) or

 Screen.height(mm)/ Screen.height(px)

Master’s Thesis 2006

LI Hui

The implementation

 33

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.2.2 View Box

In the SVG map, the viewing coordinates information is described by the view box

coordinates and four transformation parameters which are defined in the svg section

(see List 10).

<svg width="240px" height="320px" viewBox="427581 -5260617 24000 32000"
preserveAspectRatio="xMidYMid meet">

viewBox = ”leftupX -rightdownY viewBox.width viewbox.height”

viewBox.width = rightdownX-leftupX
viewbox.height = rightdownY-leftupY

map scale = Screen.width(mm)/ viewBox.width(m)

Listing 10: Formulary to calculate the map scale

The principle of this transformation is the coordinates system transformation from the

view box coordinates system to a geocoded coordinates system. It is a 2-dimensional

similarity transformation (2D Helmert). There are four transformation parameters in

this transformation. X shift, Y shift, scale factor and one rotation parameter (see

Figure 13).

Fig. 13: Coordinates transformed from SVG view box coordinate system to a geocoded
coordinate system.

X

Y

X

Y SVG view box

Master’s Thesis 2006

LI Hui

The implementation

 34

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Figure 14 and 15 show example SVG documents with same viewBox but with

different width or height.

Fig. 14: SVG document with 800 (width) x 600 (height) pixels and viewBox with 571887 (width)

x 656109 (height) m.

Fig. 15: SVG document with 240 (width) x 320 (height) pixels and viewBox with 571887 (width)

x 656109 (height) m.

Master’s Thesis 2006

LI Hui

The implementation

 35

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

But, only reduce the displaying size of SVG map is not enough. The client should

select only the displaying area where the users want to view, not necessary to load the

whole map file.

Fig. 16: Display area selection

Supposed that the user has input the coordinate of one point: pX and pY, the client

should calculate the selected area around this point according to the map scale, using

the same formulary (List. 8) to decide the view box location in the full area of map.

After those transformation and calculation, the size of map i.e. width and height of

SVG document were fixed as 240 and 320 (pixels) respectively, and the width and

height of viewBox were also set as 24000m x 32000m with map scale 1: 400000. See

Figure 17.

View

Space

Master’s Thesis 2006

LI Hui

The implementation

 36

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 17: SVG document with 240 (width) x 320 (height) pixels and viewBox with 24000 (width)

x 32000 (height) m.

This size of result SVG file in Figure 17 is only 40.4 KB, comparing to the full size

SVG file (1.76 MB) in Figure 15, undoubtedly such transformation is of important to

solve the limited connection bandwidth problem.

3.3 Design Steps

3.3.1 Java programming&debugging environment

For designing this client, it is unnecessary and inconvenient to test every steps of

debugging on the mobile phone, so we need a virtual platform, in which we can easily

simulate the real mobile device while testing the client’s capabilities and environment.

After all, we need set the java programming and debugging environment in window

system. Install JDK (Java Development Kit) and set the windows environment variant

Detailed installation steps refer to Appendix C.

Master’s Thesis 2006

LI Hui

The implementation

 37

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.3.2 Simulating mobile device

J2ME Wireless Toolkit, composes of one KVM (K Virtual Machine) and several API.

KVM needs only 40-80KB memory, 20-40KB heap, and can be run on the 16bit

25MHz processor. For the further well debugging and testing on the real mobile

phone, we need the other Toolkit from mobile phone companies according to the type

and mark of mobile phone you want to test.

Here are the interface of WTK (Wireless Toolkit) and Series 60 Platform.

Fig. 18: Interfaces of WTK (Wireless Toolkit) and Series 60 Platform

Detailed installation steps refer to Appendix D.

Master’s Thesis 2006

LI Hui

The implementation

 38

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.3.3 Programming with Eclipse/eclipseme plug-in & Netbeans

In this research Eclipse and Nebeans are chosen as my Java debug environment,

because they have friend interface and many debugging assistants, for example, you

can check every variant during the bugging to know whether the result is correct. It

has many plug-ins and can works with simulators well. The most important is that

they are both free to download and use.

Detailed installation steps refer to Appendix D.

3.3.4 System Structure analyzing and designing

The structure of the code is shown in Figure 19 and Figure 20. From the user’s point

of view, the users never care about the structure of the code except the user interface.

But for programmers, they have to take care of both aspects.

From the users’ point of view the code structure is only dealing with the interface

which is visible to them such as a pull-down menu or a from with choice box, text box

etc. As shown in Figure 19, all the elements are the client interfaces. Firstly the users

have the possibility to start the client in their mobile phone, and select the menu

pull-down menu list to operate, and the corresponding form appears afterwards. If the

user does something wrong or the client meets some unexpected errors, for example,

users input invalidate coordinate, the process will stop and jump one error alert form;

if all the inputted parameters are valid, the SVGT viewer or raster image viewer will

be displayed according to which image format the WMS supports.

During the data processing or responding from WMS, the users will see one waiting

splash, and they can stop the process as they will or if the waiting time last too long

time because of the bad Internet bandwidth. For map navigation form which the users

could use other buttons to operate, for example, click Arrow buttons to move the map,

the help form about how to operate should be include in these Forms.

The code structure from the users’ point of view.

Master’s Thesis 2006

LI Hui

The implementation

 39

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 19: Interface structure of the client from the users’ point of view

In the developers’ shoes, the structure is composed of not only the interface, but also

several individual functions which will run invisibly (see Figure 20). Java has one

famous wisdom,” Write Once，Run Anywhere”, but it is also called by somebody,”

Write Once, Debug Anywhere”. That means the more transplantable, the more

extendable, the more compatible, the better the codes are. In order to make the code

more understandable by other programmers, even by the author himself, the structure

of the code should be clear and easy to modify later. So Oriented Object Programming

(OOP) method should be used here.

Simply to say, OOP is a type of programming in which programmers define not only

the data type of a data structure, but also the types of operations (functions) that can

be applied to the data structure. In this way, the data structure becomes an object that

Main SVGT
Viewer

Layer
&SRS
Select

Format
Select

About
me

Help Point
Select

Raster
Image
Viewer

Start
Splash

Server
Add

Server
Edit

Help

Server
Delete

Error

Wait
Splash

Master’s Thesis 2006

LI Hui

The implementation

 40

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

includes both data and functions. In addition, programmers can create relationships

between one object and another. For example, objects can inherit characteristics from

other objects. One simple example is given as following, in this example, the server

URL as variant was enveloped and transferred.

Listing 11: Example of codes written in OOP method

But the more OOP methods the developers use, the more classes are created, that

means the more storage and memory will be occupied and used. Because of some

limitation as mentioned before, J2ME enters in a dilemma embarrassedly. The

developer should decide when OOP could or had better to be used, depending on

whether the variant declaration should be enveloped, in order to prevent the data

overflowing and other aspects.

In this application, the core process has four,

1. Records the data what the users create when they edit, add or delete the server list.

2. Parse the contents of XML file which got from GetCapabilities and GetMap

functions from WMS and transfer them to the other class.

3. Validate the result file from WMS after getMapRequest, justify the image format

to choose which viewer will be loaded

4. Load the SVGT or PNG image from WMS and display on screen.

 /** Set server's URL */

 public void setServerURL(Stringsurl){

 this.serverurl=url;

 }

 /** Return server's URL */

 public String getServerURL(){

 return serverurl;

 }

Master’s Thesis 2006

LI Hui

The implementation

 41

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

In the code structure, after users choose the operation of server list to edit, add, delete

server, the “RMS” class was called to store the record storage which has been

changed. Once the users select one server and ready to connect the server, “Validate

the server, get the WMS Head” class was called to validate the selected server and get

the HEAD and Content Type from WMS.

After inputting the XY coordinate, GetCapabilities request was send, and “Parse the

XML file from WMS” class was called to parse the XML document from WMS, pick

up the request parameters from the content of XML document which are needed to be

added in the GetMapRequest URL.

Once users have set all the needed values of parameters and ready to send the

GetMapRequest, “Send GetMapRequest, validate the result” and “Justify the image

format” classes were called to validate the result file which was got from WMS, if it is

XML Document, these are two possibilities, the first is SVGT file, then go to load the

SVGT Viewer; the second is XML document that contains the errors description from

WMS, when the value of parameters was set in invalidate form before. And if it is

image document, then justifies whether it is PNG format image and loades the raster

image viewer, otherwise throws one error dialog.

If any processes mentioned before meet any unexpected error, the error dialog class

was called, and users can jump back to the former interface they have stayed just now.

The code structure from the developers’ point of view:

Master’s Thesis 2006

LI Hui

The implementation

 42

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 20: Code structure of the client from the developers’ point of view

Input Coordinate

Parse the XML file from WMS

Select image format

SVGT Viewer Raster Image Viewer

MIDlet Start

Exit

Yes

No

Yes

No

Server select
RMS

Server list
Operation

Select the SRS and layers

Validate the server, get the WMS Head

Send GetMapRequest, validate the result

Yes

Justify the image format

Error Form

No

Yes

No
No

No

Yes

Yes

Yes No

Yes

Yes

Master’s Thesis 2006

LI Hui

The implementation

 43

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

4.4 J2ME Record Management Store (RMS)

The Mobile Information Device Profile -- the platform for mobile Java applications --

provides a mechanism for MIDP applications to persistently store data across multiple

invocations. This persistent storage mechanism can be viewed as a simple

record-oriented database model and is called the record management system (RMS),

through which MIDlets can persistently store data and retrieve it later. In a

record-oriented approach, J2ME RMS comprises multiple record stores. An overview

of J2ME RMS and MIDlet interfacing is given in Figure 21.

Fig. 21: Overview of J2ME RMS and MIDlet interfacing

Each record store can be visualized as a collection of records, which will remain

persistent across multiple invocations of the MIDlet. A record store is created in

platform-dependent locations, like nonvolatile device memory, which are not directly

exposed to the MIDlets.

3.4.1 Managing the device database

MDIP provides the set of classes and Interfaces in the package javax.micoredition.rms

to work with RecordStore and this set of API’s are called as RMS. The

javax.microedition.rms.RecordStore class represents a RMS record store. It provides

MIDLet

MIDLet

Record
Store

Record Management System

Master’s Thesis 2006

LI Hui

The implementation

 44

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

several methods to manage as well as insert, update, and delete records in a record

store.

The below statement will create a RecordStore with the name “databasename”, if it is

already not present otherwise this method returns a reference to the same record store

object.

Listing 12: Create or open a RecordStore

After performing all operations, a call to the given below method closes the

RecordStore with the given name.

Listing 13: Close a RecordStore

Below given method will delete the named RecordStore.

Listing 14: Delete a RecordStore

3.4.2 Data records operation

The given below statement will insert an array of bytes in RecordStore and will return

the recordID of this inserted record after writing it to persistent storage.

Listing 15: Insert a Record

RecordStore rs = RecordStore.openRecordStore("databasename",true);

Rs.closeRecordStore();

RecordStore.deleteRecordStore("databasename ");

String appt = "new record";
byte bytes[] = appt.getBytes();
rs.addRecord(bytes,0,bytes.length);

Master’s Thesis 2006

LI Hui

The implementation

 45

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

RecordID is a unique identifier used by RMS for identifying the records in a

particular RecordStore, so the recordID of the record has to be passed to be updated

and updates new bytes of array using the given below method

Listing 16: Update a Record

To read a specified record from RecordStore make a call to getRecord () method in

the given below way.

Listing 17: Read a RecordStore

This given method call will delete the record with a specified recordID.

Listing 18: Delete a RecordStore

In this application, RMS was used to restore the server list, including WMS name and

URL. And in the further developing, RMS can also store the image as byte array, to

reduce the repetition times of requesting to the same WMS map source. If the users

access the same source again later, the byte array was read from RMS to rebuild the

image.

String newappt = "update record";
Byte data = newappt.getBytes();
Rs.setRecord(RecordID, data, 0, data.length());

Rs.deleteRecord(RecordID);

byte [] readRecord = Rs.deleteRecord(RecordID);

Master’s Thesis 2006

LI Hui

The implementation

 46

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.5 KXML XML Parser

The XML parser used in this application is kXML 2.0. In order to make kXML

classes available to the application, kxml2-src.zip package from the kXML site need

to be downloaded. Then, copy the contents of the package to the “src” folder in the

development system.

As described before, the GetCapabilities XML document should be parsed.

You can see one section of this XML document in Listing 19.

Listing 19: One section of the GetCapabilities XML document

In order to capture data from WMS, the application should open a URL connection

and get GetCapabilities XML data on an InputStream. The InputStream is made

available to the XMLParser through an InputStreamReader. This is illustrated in

Listing 20.

Listing 20: Get the GetCapabilities XML data from WMS

When the XMLParser's read() method encounters an item, such as the event name

(tag name), and read event text (that is, the text enclosed between the start and end

tags, also called content). In Listing 21, the parser finds the tag name of title of WMS,

then reads the content further and extractes the text for displaying purposes.

<<Service>
<Name>OGC:WMS</Name>
<Title>Open Source Map Server</Title>
<Abstract>Open source based WMS compliant Web Map Sever developed

for educational purpose maintained by Filmon Mehari under supervision
of Professor Dr.-Ing. Franz Josef Behr .Contact:
franz-josef.behr@hft-stuttgart.de or filmon44@yahoo.com.SVG data
from all over the world.

</Abstract>
<KeywordList>
<Keyword>WMS 1.1.1</Keyword>
………..
</Service>

HttpConnection hc = (HttpConnection)Connector.open(url);
InputStream is = hc.openInputStream();
Reader reader = new InputStreamReader(is);
KXmlParser parser = new KXmlParser();
parser.setInput(reader);

mailto:franz-josef.behr@hft-stuttgart.de
mailto:filmon44@yahoo.com.SVG

Master’s Thesis 2006

LI Hui

The implementation

 47

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Listing 21: Picking up WMS title from GetCapabilities XML data

The title of WMS will be extracted and be displayed on the screen, see Figure 22.

Fig. 22: Display the WMS title

3.6 Tinyline SVGT Toolkit

TinyLine is Java and runs on various J2ME flavors (J2ME MIDP2.0, Nokia Series 60

MIDP, and J2ME Personal Profile). It is actually more than a viewer and offers a

full-blown toolkit on which basis a viewer has been developed and made available for

free download. TinyLine is currently in version 1.9 and is passing almost all of the

SVG Tiny portion of the W3C SVG 1.1 Test Suite (a basis for claiming an SVGT

implementation is compliant).

The screen shot is the interface of Tinyline SVGT viewer 1.9.

Fig. 23: Interface of Tinyline SVGT Viewer 1.9

if (parser.getName().equals("Service"))
{
String wmstitle = null;
parser.require(XmlPullParser.START_TAG, null, null);
if (name.equals("Title"))
wmstitle = parser.nextText();
parser.require(XmlPullParser.END_TAG, null, name);
}

Master’s Thesis 2006

LI Hui

The implementation

 48

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

TinyLine SVG Toolkit is SVG Tiny applications and SDK, which targets Java

developers who want to use SVG Tiny in their applications and needs customization.

Download SDK package and copy the contents to the “src” folder in the development

system.

Once users get the SVGT file through the GetMap Method, it is easy to load Tinyline

SVGT Viewer to view it, with panning and zooming function.

Listing 22: load and Initialize the Tinyline SVGT Viewer

In this application, only Pan, Zoom, Orig View and Quality and Help functions are

preserved, some functions like Link that will never be used has been taken out.

Fig. 24: Interface of Tinyline SVGT Viewer in current application

// Create the SVG canvas.
canvas = new MIDPSVGCanvas(display);
// Start the event dispatching queue
canvas.start();
//Load the SVGT file from WMS
canvas.goURL(GetMapurl);

Master’s Thesis 2006

LI Hui

The implementation

 49

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

3.7 Raster image viewer development

As described before, PNG is the mostly image format used in mobile device

application. In J2ME, the Graphics class provides a method for drawing images, static

image and non-static image. Static image can not be modified after been created;

non-static image is drawn by the J2ME drawing function. Because the limited process

speed and memory, the PNG map should be created in form of static image. The static

image can be created based on the binary PNG format.

Listing 23: Create static image though binary PNG format.

At first the PNG image data is read though the data stream from WMS, and then puts

the data into one byte buffer. At last the Viewer reads those data from the byte buffer

and paints the image on the screen according to the data.

Fig. 25: Read image data as byte array

Similar to SVGT Viewer, the PNG Viewer was developed with such functions, Pan,

Zoom, Orig View, and Help. See Figure 26.

Image img=Image.createImage(byte[], int offset, int length);

……-55,66,-47,-103,-85,105,106,-30,
13,17,-68,-11,88,43,45,13,69,21,-11
,-106,62,4,6,-25,112,62,-4,-28,115,1
21,-67,-128,127,-50,107,-109,78,8,7
,-88,14,108,-74,27,-26,41,-14,-32,-8
3,123,-4,-38,-41,30,112,-21,43,45,1
3,69,21,-82,-63,45,42,73,103,-126,-
19,-102,7…………………

Master’s Thesis 2006

LI Hui

The implementation

 50

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 26: Interface of raster image Viewer

Master’s Thesis 2006

LI Hui

Conclusion

 51

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

4 Conclusion

4.1 Usability testing

It is very necessary to evaluate the performance of the client after the development.

Other WMS server and different map data will be tested on the client.

The client was tested on one real mobile device, because the codes debugging on the

special simulator, for example, S60 platform, is complex and time-consuming, several

parts of the codes should be modified to adapt to the special criterion of the mobile

devices.

4.1.1 Test with SVG image WMS Server

Load the client, Figure 27 shows the Welcome wait splash and the About description

of the client

.

Fig. 27: Loads client, Welcome wait splash, About description

First the vector image based WMS was chosen, and connect to the www.gis-news.de,

then the wait splash is displaying during the connection. In the Input the X and Y

coordinate please Form input point coordinate and then connect to WMS again to

send GetCapabilities request, and the wait splash displays also during the sending.

The information below the Form is server software and content type information of

WMS. See Figure 28.

http://www.gis-news.de

Master’s Thesis 2006

LI Hui

Conclusion

 52

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 28: Connect WMS, wait splash, input coordinate and WMS information

In Form Select layers please, select CRS and layers with the same CRS. Then select

the image format in Form Select image’s format please, and go on to load the SVG

map. If parameters were inputted wrongly before, error dialog will be displayed.

For example, if you select CRS EPSG: 31468, but select the layer airports with

different CRS EPSG: 26715, the error message will appear as following:

LayerNotDefined Layer airports with SRS EPSG: 31468 not found. Please check your

layer name and/or SRS. The layers supported by this SRS EPSG: 31468 are. See

Figure 29

Fig. 29: Select CRS and layers, Select image format, Error dialog

Master’s Thesis 2006

LI Hui

Conclusion

 53

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

If all the parameters are valid, after the wait splash (maybe takes a little bit long time),

the SVG map will be displayed. The users can use Pan function to move the map, and

Zoom function to zoom in or out. See Figure 30.

Fig. 30: Wait splash, Move SVG map, Zoom in or out

Function Orig View is for retrieveing the original map view and the image quality of

SVG map can be reset. If the users are not clear about the operation, Help function

can show all the operation description. See Figure 31.

Fig. 31: Set the quality of SVG map, View original map, Show Help

Master’s Thesis 2006

LI Hui

Conclusion

 54

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

4.1.2 Test with other Raster image WMS Server

For the raster image based WMS, USGS14 (U.S. Geological Survey) WMS was

chosen.

Listing 24: The GetCapabilities request in URL of USGS WMS

Use Add function to add one new WMS server, and save it. The Confirmation after

saving tells users that they have add a new server successfully. See Figure 32.

Fig. 32: Add one new WMS server to Server List

Use Edit function to edit the selected WMS server if the URL needs to be changed.

After saving, the Confirmation tells users that the server was edited successfully. See

Figure 33.

Fig. 33: Edit one WMS server in Server List

14 http://www.usgs.net

http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?REQUEST=GetCapabilit
ies&SERVICE=wms

http://www.usgs.net
http://gisdata.usgs.net/servlet/com.esri.wms.Esrimap?REQUEST=GetCapabilit

Master’s Thesis 2006

LI Hui

Conclusion

 55

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Use Delete function to delete the WMS server, the URL will be displayed to let the

users know whether the selected server is the server that they want to delete. And the

client will ask users again to make sure this operation. After clicking Sure, the

Confirmation will display.

Fig. 34: Delete one WMS server from Server List

Same operation as in Chapter 4.1.1, connect to the WMS and input raster image

coordinate. Because the raster image created in this WMS uses pixel coordinate, the

Raster Image Coordinate option was chosen. And then select layers of interesting and

the PNG image format. See Figure 35.

Fig. 35: Input raster image coordinate, Select

If all the parameters are valid, the client will load the PNG format map. Pan function

can be used to move the map, and Zoom function is for zooming in or out. Orig View

function can be used for view the original map. See Figure 36.

Master’s Thesis 2006

LI Hui

Conclusion

 56

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Fig. 36: Move SVG map, Zoom in or out, View original map

4.1.3 Test with Mobile Phone

Mobile phone Nokia 6230i with S40 and 6630 with S60 were chosen for the testing.

The following are the interfaces of client in Nokia 6230i. The operations are the same

as in chapter 4.1.1, www.gis-news.de WMS was chosen. See Figure 31.

Fig. 37: Test with Nokia 6230i

For non-developers (normal users), the steps of installation on mobile device and how

to simulate the client on Personal Computer will be described in Appendix F.

http://www.gis-news.de

Master’s Thesis 2006

LI Hui

Conclusion

 57

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

4.2 Summary

The summary of the advantage problems of the developed client is discussed in the

following:

4.2.1 Advantage

Web map server has been well developed, both theoretically and practically. The

standard map formats of web map server are raster based. SVG format is newly

integrated in digital cartography and begin to be supported by more and more WMS.

This client can not only display the traditional raster image format PNG, but also the

SVGT (SVG and SVGB also) format image. It has the capability to parse mostly of

the GetCapabilities Requests XML document responded from WMS, which follow

the OGC WMS 1.1.1 (or 1.1.0) Implementation Specification and have the very

similar DTD15 (Document Type Definition). The client can be seen as one common

solution of WMS client points to the mobile devices.

4.2.2 Outlook

This thesis work designed and implemented one WMS client for the mobile device.

Currently the function is working well, and some advanced improvements can be

performed if the work could be continued.

4.2.2.1 Capability to parse all GetCapabilities Request XML Document

Current client can parse mostly of the GetCapabilities Requests XML document

responded from WMS, which follow the OGC WMS 1.1.1 or 1.1.0 Implementation

Specification and have the very similar DTD. That means if one WMS uses DTD that

very different from the standard, the parser will stop parsing. For example, the

following 2 Listings, are one part of the same element of two different XML

document. The format types, WMS_XML and INIMAGE in tag Format should be

picked up.

15 A Document Type Definition defines the legal building blocks of an XML document. It defines the

document structure with a list of legal elements.

Master’s Thesis 2006

LI Hui

Conclusion

 58

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Listing 25: The Exception element content 1 in XML content

Listing 26: The Exception element content 2 in XML content

The client can parse the Exception element in Listing 25, these are two elements with

same element tag name Format in this node Exception, which have different element

contents: WMS_XML and INIMAGE. But when the parser meets the Exception

element node in Listing 26, it doesn’t work. Because the Exception element node in

Listing 26 has different structure, the element contents in the Listing 25 before, now

change their form to two new elements in the Format element node. The parser can

not recognize these two new elements as the content of the Format element. The

element contents: WMS_XML and INIMAGE now become tag name of elements. If

we still want to parse the element in Listing 26, new codes must be written point to

structure in Listing 26. Maybe some method will be used later, and the parser can

parse all of the GetCapabilities XML documents that with similar DTD.

4.2.2.2 Dynamically load the image

Current application can display the area that users select, but if the users pan it and the

screen boundary encroaches the view box boundary of the image, the map outside of

the view box boundary can not be displayed dynamically. For raster image, preload

image as byte array can solve the problem.

 <Exception>
 <Format> WMS_XML </Format>

<Format> INIMAGE </Format>
 </Exception>

 <Exception>
 <Format>
 <WMS_XML />
 <INIMAGE />
 </Format>
 </Exception>

Master’s Thesis 2006

LI Hui

Conclusion

 59

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

The whole raster image could be read firstly and stored as byte array in memory of the

mobile devices. Because of the PNG special format, each area can be found its

corresponding place in the byre array in one sequence. So if the image display moves

outside of view box boundary, the client can load one part conjoint byte array from

the whole array, and can redraw the byte array to image.

4.2.2.3 Support Google and Microsoft map database

Google map comes new but has shown its multitudinous, amazing and attracting map

search functions for all users and developers in very short time. The further

development can base on Google or Microsoft map API. Those APIs let developers

easily embed Google or Microsoft Maps in their own web pages with JavaScript. If

users have need for placing Google Maps on your pages, their page must contain a

script tag pointing to that URL, using the Maps API key16 got from Google Map

when users signed up for the API. If users’ Maps API key were "abcdefg", then their

script tag might look like this:

Listing 27: Embed Google Map in users own web page using JavaScript

For mobile client, the map API can also be embedded in application with J2ME.

4.2.2.4 LBS/GPS Functions

LBS or GPS Functions could be added later to determine the location of the user, the

user don’t need to input the coordinate and the client can automatically and directly

display the map of the location.

16 A single Maps API key is valid for a single "directory" on your web server.

<script src="http://maps.google.com/maps?file=api&v=1&key=abcdefg"

 type="text/javascript">
</script>

http://maps.google.com/maps?file=api&v=1&key=abcdefg

Master’s Thesis 2006

LI Hui

Conclusion

 60

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

For LBS function developing, the client can use the Location API for J2ME (JSR 179),

a set of generic APIs that can be used for developing location-based services. This

API defines an optional package, javax.microedition.location, which enables

developers to write wireless location-based applications and services for

resource-limited devices like mobile phones, and provides mobile applications with

information about the device's present physical location and orientation (compass

direction), and support the creation and use of databases of known landmarks, stored

in the device.

For Location API and GPS receiver, location can be expressed in the widely used

latitude-longitude-altitude coordinate system. Latitude is expressed as 0-90 degrees

north or south of the equator, and longitude as 0-180 degrees east or west of the prime

meridian, which passes through Greenwich, England. Altitude is expressed in meters

above sea level.

After got the coordinate of one location, if we want to display the location on the map

in client, the latitude-longitude-altitude coordinate should be converted to North-East

(X,Y) Coordinates, such as UTM (Universal Transverse Mercator), using some

complex calculation coordinate transformation.

Master’s Thesis 2006

LI Hui

Appendix

 61

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Appendix A17

Methods of class KXmlParser
 void defineEntityReplacementText(java.lang.String entity,

java.lang.String value)

 int getAttributeCount()

 java.lang.String getAttributeName(int index)

 java.lang.String getAttributeNamespace(int index)

 java.lang.String getAttributePrefix(int index)

 java.lang.String getAttributeType(int index)

 java.lang.String getAttributeValue(int index)

 java.lang.String getAttributeValue(java.lang.String namespace,
java.lang.String name)

 int getColumnNumber()

 int getDepth()

 int getEventType()

 boolean getFeature(java.lang.String feature)

 java.lang.String getInputEncoding()

 int getLineNumber()

 java.lang.String getName()

 java.lang.String getNamespace()

 java.lang.String getNamespace(java.lang.String prefix)

 int getNamespaceCount(int depth)

 java.lang.String getNamespacePrefix(int pos)

 java.lang.String getNamespaceUri(int pos)

17 THE INFORMATION IS CITED IN JavaDoc of kXML

Master’s Thesis 2006

LI Hui

Appendix

 62

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

 java.lang.String getPositionDescription()

 java.lang.String getPrrefix()

 java.lang.Object getProperty(java.lang.String property)

 java.lang.String getText()

 char[] getTextCharacters(int[] poslen)

 boolean isAttributerDefault(int index)

 boolean isEmptyrElementTag()

 boolean isWhitespace()

 int next()

 int nextTag()

 java.lang.String nextText()

 int nextToken()

 void require(int type, java.lang.String namespace,
java.lang.String name)

 void setFeature(java.lang.String feature, boolean value)

 void setInput(java.io.InputStream is, java.lang.String _enc)

 void setInput(java.io.Reader reader)

 void setProperty(java.lang.String property, java.lang.Object value)

 void skipSubTree()
 Skip sub tree that is currently porser positioned on.

Master’s Thesis 2006

LI Hui

Appendix

 63

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Appendix B

The steps to install the SVG WMS in localhost.

1. Install the Apache http server under the folder C:\Apache, download and run

apache_2.0.54-win32-x86-no_ssl.msi

2. Install MySQL 4.02, also under the C:\MYSQL folder. Set the supervisor “root”

and password “root”.

3. Install PHP 5.0.5.5, unzip the php-5.0.5-Win32.zip file under C:\PHP folder

l Copy C:\PHP\Php.ini-dist to C:\Windows\ and rename it as Php.ini

 COPY F:\PHP\Php.ini-dist C:\Windows

Ren Php.ini-dist Php.ini

l Copy all the files in C:\PHP\dlls folder to C:\Windows\System32\, if system

is WINDOWS 2000 the path is: C:\WINNT\System32\; if system is WIN9X /

2003 the path is: C:\Windows\System32\

 COPY F:\PHP\dlls*.* C:\Windows\System32\

l Copy C:\PHP\php4ts.dll file to C:\Windows\System32\

COPY F:\PHP\php4ts.dll C:\Windows\System32\

l Now edit the C:\Windows\Php.ini, find extension_dir String and change the

path to your own extensions path.

 ; Directory in which the loadable extensions (modules) reside.

extension_dir = F:\PHP\extensions

l Find cgi.force_redirect String and chage the value from default 1 to 0,

and delete the semicolon front

Find MySQL Sting, and modify as following:

mysql.default_port = 3306

mysql.default_host = localhost

mysql.default_user = root

mysql.default_password = test

l Find the

extension=php_mysql.dll,

Master’s Thesis 2006

LI Hui

Appendix

 64

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

extension=php_gd2.dll,

extension=php_mbstring.dll String, delete the semicolon front

4. Install phpMyAdmin 2.39.2.2, unzip the file into C:\Apache\htdocs\ phpmyadmin

l Open the config.inc.php file, find $cfg['Servers'][$i]['host'], and replace the

host with localhost, and edit the following user name and password.

l Find :$cfg[\'PmaAbsoluteUri\'], and input the relative path, localhost\

phpmyadmin

5. Install PHPMyWMS, also put the dictionary into C:\Apache\htdocs\phpmywms

 In the browser input http://localhost/phpmywms/install.php

l Click install->I Agree

l Input Database Server: localhost

 Database Name: test

 Database User Name: root

 Database Password : test

 Table Prefix: wms_

l Now enter the General Setting, input all empty column, this will be included

in the GetCapabilities Request XML document.

6. In browser input http://localhost/phpMyAdmin/index.php, go to set the database.

 Choose test database in the left, select db99958geom, import text file:

opengeodb_0_1_3_MI_EPSG31467_2.txt and Bundeslaender_EPSG31467_2.txt.

Field terminated by “,”, the others were set by blank.

Till now, the geometry was imported into the database.

http://localhost/phpmywms/install.php
http://localhost/phpMyAdmin/index.php

Master’s Thesis 2006

LI Hui

Appendix

 65

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Appendix C

Set the Java programming and debugging environment

1. Install jdk-1_5_0_04-windows-i586-p.exe to C:\Program Files\Java\jdk1.5.0_04

2. Set the environment variant

l In window desktop, right click My Computer, select property.

l Choose top tab Advanced, click Environment Variant in the bottom.

In System Variant colomn, click Add New, add new system variant as:

JAVA_HOME = C:\Program Files\Java\jdk1.5.0_04

CLASSPATH= .;%JAVA_HOME%\lib\dt.jar;%JAVA_HOME%\lib\tools.jar

 Edit Path variant,

 add ;%JAVA_HOME%\bin in the Path variant.

l Now we have finished the installment setting of JDK, we can have a test

HelloWorld

create one txt file, input the codes below, and rename the txt file with postfix

java as helloWorld.java

class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 }

}

l Click Start buttom in the windows desktop and click Run, input cmd and the

command DOS interface will appear. Input the dictionary where you put the

java file. Input “javac helloWorld.java”, and the java code will be run. Hello

World String will display in the interface.

Master’s Thesis 2006

LI Hui

Appendix

 66

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Appendix D

Install the simulator and programming software

1. Install WTK(sun_java_wireless_toolkit-2_3-beta-windows.exe)

2. Download Eclipse and extract it to any folder

3. Extract eclipseme.feature_1.0.0_site.zip to the Eclipse location, this is the plug-in

in Eclipse for the WTK, and set it in Eclipse.

l Start Eclipse click pull-down menu Help->Software Updates->Find and

Install

l Select eclipseme.feature_1.0.0_site.zip, and click Finish

l Click pull-down menu Windows->preferences

l In the left column, choose J2ME->Platform Components, Wireless Toolkits

icon will display in the right column.

l Right click this Wireless Toolkits icon, Add Wireless Toolkit, set the

dictionary to where WTK locates.

4. Create new J2ME project

l Click pull-down menu in Eclipse, File->New->Project

l Select J2ME->j2ME Midlet Suite->Next->Project Name(HelloWorld

)->DefaultColorPhone Platform->Finish

l Input the codes below:

 import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

public class Hello extends MIDlet

{

 private Display display;

 public Hello()

 {

 display = Display.getDisplay(this);

 }

 public void startApp()

 {

Master’s Thesis 2006

LI Hui

Appendix

 67

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

 Form f = new Form("Test");

 f.append("hello world!");

 display.setCurrent(f);

 }

 public void pauseApp()

 {

 }

 public void destroyApp(boolean unconditional)

 {

 }

}

 and run the code.

Till now we have succeeded in setting the J2ME develop environment in Eclipse.

Master’s Thesis 2006

LI Hui

Appendix

 68

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Appendix E18

An example of SVGT image

The source codes:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1 Tiny//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd">
<svg version="1.1" baseProfile="tiny" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" id="svg-root" width="100%" height="100%"
viewBox="0 0 480 360">
 <SVGTestCase xmlns="http://www.w3.org/2000/02/svg/testsuite/description/">
 <OperatorScript version="$Revision: 1.6 $"
testname="shapes-polygon-01-f.svg">
 <Paragraph>
 The rendered picture should match the reference image, except
 for possible variations in the labelling text (per CSS2 rules).
 </Paragraph>
 </OperatorScript>
 </SVGTestCase>
 <title id="test-title">shapes-polygon-01-t</title>
 <desc id="test-desc">Test that viewer has the basic capability to handle the 'polygon'
element.</desc>
 <!--===
=====-->
 <!--Content of Test Case follows... =====================-->
 <!--===
=====-->
 <g id="test-body-content">
 <!-- Test case label. -->
 <!--
== -->
 <!-- First two polygons, convex and "regular". -->

18 This example can be found in http://www.tinyline.com/svgt/samples/tiny_test/index.html

http://www.w3.org/Graphics/SVG/1.1/DTD/svg11-tiny.dtd
http://www.w3.org/2000/svg
http://www.w3.org/1999/xlink
http://www.w3.org/2000/02/svg/testsuite/description/
http://www.tinyline.com/svgt/samples/tiny_test/index.html

Master’s Thesis 2006

LI Hui

Appendix

 69

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

 <!--
== -->
 <!-- Open, convex, "regular". -->
 <polygon id="polygon-01" fill="none" stroke="#000000"
points="59,45,95,63,108,105,82,139,39,140,11,107,19,65"/>
 <!-- Closed, convex, "regular". -->
 <polygon id="polygon-02" fill="red"
points="179,45,218,63,228,105,202,139,159,140,131,107,139,65,179,45"/>
 <!--
== -->
 <!-- Third polygon, concave and irregular. -->
 <!--
== -->
 <!-- Closed, convex, "irregular". -->
 <polygon id="polygon-03" fill="blue" stroke="black" stroke-width="6" points="350,45 375,80
410,95 375,110 350,145 325,120 290,95 325,70,350,45"/>
 <!--
== -->
 <!-- Fourth and fifth polygons. -->
 <!--
== -->
 <!-- Closed, convex, "regular". -->
 <polygon id="polygon-05" fill="none" stroke="#0000FF" stroke-width="8"
points="59,185,98,203,108,245,82,279,39,280,11,247,19,205,59,185"/>
 <!-- Open, convex, "regular". -->
 <polygon id="polygon-06" fill="#00FF00" stroke="#0000FF" stroke-width="8"
points="179,185,218,203,228,245,202,279,159,280,131,247,139,205"/>
 <!--
== -->
 <!-- Sixth polygons, irregular with both concave and convex angles. -->
 <!--
== -->
 <polygon id="polygon-07" fill="none" stroke="#00FF00" stroke-width="8"
points="270,225 300,245 320,225 340,245 280,280 390,280 420,240
280,185"/>
 </g>
 <text id="revision" x="10" y="340" font-size="40" stroke="none" fill="black">$Revision:
1.6 $</text>
 <rect id="test-frame" x="1" y="1" width="478" height="358" fill="none"
stroke="#000000"/>
</svg>

Master’s Thesis 2006

LI Hui

Appendix

 70

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Appendix F

Install the client on mobile device
At first, the binary files of Mobile_SVGT_WMSClient_S60_1.xx.jad (or

Mobile_SVGT_WMSClient_1.xx.jad) and Mobile_SVGT_WMSClient_S60_1.xx.jar

(or Mobile_SVGT_WMSClient_1.xx.jar) are in hand.

a). For Nokia mobile phone users, please download Windows PC software for Nokia

phone: Nokia PC Suite from http://europe.nokia.com/nokia/0,,72014,00.html. After

the installation, connect mobile phone to the PC with USB cable (Nokia production),

and run the JAR file, the client will be automatically installed in your Nokia phone.

And next b method can also be used.

b). For non-Nokia mobile phone users, please use mobile phone to browser the

following website:

http://home.arcor.de/ar11073462/Mobile_SVGT_WMSClient/wap.html, using WAP

(Wireless Application Protocol) and GPRS (General Packet Radio Service) surfing

functions. Select the link of Mobile_SVGT_WMSClient_1.xx, the client will be

downloaded and run it.

Simulate the client on PC

Please download JDK and WTK (see Appendix C and D) and install them, and run

the JAD file in the PC.

http://europe.nokia.com/nokia/0,,72014,00.html
http://home.arcor.de/ar11073462/Mobile_SVGT_WMSClient/wap.html

Master’s Thesis 2006

LI Hui

Declaration

 71

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

Declaration

The following Master thesis was prepared in my own words without any additional help. All

used sources of literature are listed at the end of the thesis.

I hereby grant to Stuttgart University of Applied Sciences permission to reproduce and to

distribute publicly paper and electronic copies of this document in whole and in part.

 Stuttgart, Date

Signature

Master’s Thesis 2006

LI Hui

References

 72

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

References

Kim Topley (2002): J2ME in a Nutshell.
Publisher: O'Reilly ISBN: 0-596-00253-X, 478 pages

Yu Feng and Dr. Jun Zhu. (2001): Wireless Java Programming with J2ME.
By Sams Publishing, ISBN: 0-672-32135-1, 487 pages

Wang Seng (2004): Java mobile phone/PDA programming.
Publisher: Publishing House of Electronics Industry, ISBN: 7-5053-9606-4, 522 pages

Rajinder Singh Nagi (2004): Cartographic visualization for mobile applications
. Master Thesis,
International Institute for Geo-information Science and Earth Observation, India.

KMS, National Survey and Cadastre - Denmark/ Flemming Nissen, Anders Hvas,
Jørgen Münster-Swendsen and Lars Brodersen (2003): Small - Display Cartography .
Project Thesis, GiMoDig Project. .

Shuichi TAKINO (2001): GIS ON THE FLY. Thesis,
International Symposium on Asia GIS 2001, Japan.

Sun Yundong, Liu Changzheng, Gu Ming (2003): LBS implement using Java and
WebServices. Thesis,
Qinghua University, China.

OGC (2006): OpenGIS Web Map Service WMS Implementation Specification.
http://www.opengeospatial.org/docs/01-068r2.pdf [Accessed 20 Feb, 2006]

Naveen Balani (2004): Using kXML to access XML files on J2ME devices
Technical document, ibm.com/developerWorks

WEBOPEDIA.COM (2006): Object-Oriented Programming. [Internet]. Available
from:
http://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html
[Accessed 20 Feb, 2006]

IBM (2006): J2ME record management store [Internet]. Available from:

http://www.opengeospatial.org/docs/01-068r2.pdf
http://www.webopedia.com/TERM/O/object_oriented_programming_OOP.html

Master’s Thesis 2006

LI Hui

References

 73

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

http://www-128.ibm.com/developerworks/library/wi-rms/ [Accessed 20 Feb, 2006]

IBM (2006): Add XML parsing to your J2ME applications [Internet]. Available from:
http://www-128.ibm.com/developerworks/library/wi-parsexml/
[Accessed 20 Feb, 2006]

IBM (2006): Combine J2ME applications with WMS [Internet]. Available from:
http://www-128.ibm.com/developerworks/cn/webservices/ws-javamobile/index.html?
ca=dwcn-newsletter-webservices
[Accessed 20 Feb, 2006]

W3C (2006): Extensible Markup Language (XML) [Internet]. Available from:
http://www.w3.org/XML/ [Accessed 20 Feb, 2006]

W3C (2006): Portable Network Graphics (PNG) Specification (Second Edition)
[Internet]. Available from: http://www.w3.org/TR/PNG/ [Accessed 20 Feb, 2006]

W3C (2006): Mobile SVG Profiles: SVG Tiny and SVG Basic[Internet].
Available from: http://www.w3.org/TR/SVGMobile/ [Accessed 20 Feb, 2006]

SUN (2006): Parsing XML in J2ME [Internet]. Available from:
http://developers.sun.com/techtopics/mobility/midp/articles/parsingxml/
[Accessed 20 Feb, 2006]

SUN (2006): Introduction to J2ME Web Services [Internet]. Available from:
http://developers.sun.com/techtopics/mobility/apis/articles/wsa/
[Accessed 20 Feb, 2006]

SUN(2006): Java 2 Platform, Micro Edition (J2ME) [Internet].
Available from: http://java.sun.com/j2me [Accessed 20 Feb, 2006]

HTMLGOODIES.COM (2006): Image Formats [Internet]. Available from:
http://www.htmlgoodies.com/tutorials/web_graphics/article.php/3479931
[Accessed 20 Feb, 2006]

Rahul Kumar Gupta (2003): Intelligent applicances and J2ME's RMS. [Internet].
Available from:
http://java.ittoolbox.com/documents/peer-publishing/intelligent-applicances-and-j2me
s-rms-2755 [Accessed 20 Feb, 2006]

WIKIPEDIA – THE FREE ENCYCLOPEDIA (2006): PNG. [Internet]. Available
from: http://en.wikipedia.org/wiki/Png [Accessed 20 Feb, 2006]

BU.EDU (2006): Raster Image Files [Internet]. Available from:

http://www-128.ibm.com/developerworks/library/wi-rms/
http://www-128.ibm.com/developerworks/library/wi-parsexml/
http://www-128.ibm.com/developerworks/cn/webservices/ws-javamobile/index.html
http://www.w3.org/XML/
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/SVGMobile/
http://developers.sun.com/techtopics/mobility/midp/articles/parsingxml/
http://developers.sun.com/techtopics/mobility/apis/articles/wsa/
http://java.sun.com/j2me
http://www.htmlgoodies.com/tutorials/web_graphics/article.php/3479931
http://java.ittoolbox.com/documents/peer-publishing/intelligent-applicances-and-j2me
http://en.wikipedia.org/wiki/Png

Master’s Thesis 2006

LI Hui

References

 74

 STUTTGART UNIVERSITY OF APPLIED
SCIENCES

FACHHOCHSCHULE
STUTTGART

HOCHSCHULE FÜR
TECHNIK

http://scv.bu.edu/tutorials/ImageFiles/image101.html [Accessed 20 Feb, 2006]

DEVELOPER.COM (2006): MIDP Programming with J2ME [Internet].
Available from: http://www.developer.com/java/j2me/print.php/10934_1561591_6
[Accessed 20 Feb, 2006]

XML.COM (2006): Going Mobile With SVG: Standards [Internet].
Available from: http://www.xml.com/pub/a/2004/06/16/mobilesvg.html
[Accessed 20 Feb, 2006]

XML.COM (2006): Mobile SVG [Internet]. Available from:
http://www.xml.com/pub/a/2004/08/18/sacre.html [Accessed 20 Feb, 2006]

SVG.ORG (2006): Shipping and Announced SVG Phones [Internet].
Available from: http://svg.org/special/svg_phones [Accessed 20 Feb, 2006]

DEVELOPER.COM (2006): MIDP Programming with J2ME [Internet].
Available from: http://www.developer.com/java/j2me/article.php/10934_1561591_1
[Accessed 20 Feb, 2006]

INTERNETNEWS.COM (2006): Symbian at a Mobile Loss [Internet].
http://www.internetnews.com/wireless/article.php/3584431 [Accessed 20 Feb, 2006]

CARTO.NET (2006): SVG tutorial, example and demonstration [Internet].
http://www.carto.net/papers/svg/samples/ [Accessed 20 Feb, 2006]

GOOGLE MAP (2006): Develop Your Own Location-Based Services Using Google
Maps [Internet].
http://www.google.com/apis/maps/ [Accessed 20 Feb, 2006]

http://scv.bu.edu/tutorials/ImageFiles/image101.html
http://www.developer.com/java/j2me/print.php/10934_1561591_6
http://www.xml.com/pub/a/2004/06/16/mobilesvg.html
http://www.xml.com/pub/a/2004/08/18/sacre.html
http://svg.org/special/svg_phones
http://www.developer.com/java/j2me/article.php/10934_1561591_1
http://www.internetnews.com/wireless/article.php/3584431
http://www.carto.net/papers/svg/samples/
http://www.google.com/apis/maps/

